674 research outputs found

    A study of higher dimensional inhomogeneous cosmological model

    Full text link
    In this paper we present a class of exact inhomogeneous solutions to Einstein's equations for higher dimensional Szekeres metric with perfect fluid and a cosmological constant. We also show particular solutions depending on the choices of various parameters involved and for dust case. Finally, we examine the asymptotic behaviour of some of these solutions.Comment: 9 Latex pages, No figure, Revtex styl

    A Mixed-Methods Approach for Evaluating the Influence of Residential Practices for Thermal Comfort on Electricity Consumption in Auroville, India

    Get PDF
    With rapid global economic growth and a rise in disposable household income, particularly within a progressively warming planet, the escalating demand for energy to achieve thermal comfort has become a salient concern in the Global South, notably in emerging economies like India. This burgeoning need for cooling solutions has not only underscored the vital role of energy consumption but has also accentuated the imperative of comprehending the ensuing implications for electricity policy and strategic planning, particularly within the ambit of the Global South. This study explored the nuanced landscape of active cooling within an intentional community, Auroville, in southern India, aiming to discern the factors underpinning household preferences and practices in the pursuit of thermal comfort. Employing a mixed-methods approach, this study contributed empirically and methodologically to the interdisciplinary discourse by analysing residential electricity consumption patterns and cooling practices within selected households in the specified community. The study unfolded in three methodological stages: firstly, an analysis of climatic data coupled with an environmental stress index (ESI) assessment; secondly, the monitoring of end-user electricity consumption followed by rigorous data analysis; and lastly, the utilisation of qualitative in-depth interviews and observational techniques. This study’s outcome yielded empirical insights into the unprecedented shifts in the ESI for Auroville since 2014. Furthermore, the study unravelled the intricate complexities inherent in occupant behaviour within residential structures, thereby offering valuable insights into the practices that shape householders’ cooling preferences. This research enriched the understanding of the dynamics of energy consumption in the pursuit of thermal comfort and contributes to the broader discourse on sustainable development and energy policy in the context of climate change

    Gravitational Collapse in Higher Dimensional Husain Space-Time

    Full text link
    We investigate exact solution in higher dimensional Husain model for a null fluid source with pressure pp and density ρ\rho are related by the following relations (i) p=kρp=k\rho, (ii) p=kρ−B(v)ραp=k\rho-\frac{B(v)}{\rho^{\alpha}} (variable modified Chaplygin) and (iii) p=kραp=k\rho^{\alpha} (polytropic). We have studied the nature of singularity in gravitational collapse for the above equations of state and also for different choices of the of the parameters kk and BB namely, (i) k=0k=0, B=B= constant (generalized Chaplygin), (ii) B=B= constant (modified Chaplygin). It is found that the nature of singularity is independent of these choices of different equation of state except for variable Chaplygin model. Choices of various parameters are shown in tabular form. Finally, matching of Szekeres model with exterior Husain space-time is done.Comment: 12 latex pages, No figure, RevTex styl

    Role of Modified Chaplygin Gas as a Dark Energy Model in Collapsing Spherically Symmetric Cloud

    Full text link
    In this work, gravitational collapse of a spherical cloud, consists of both dark matter and dark energy in the form of modified Chaplygin gas is studied. It is found that dark energy alone in the form of modified Chaplygin gas forms black hole. Also when both components of the fluid are present then the collapse favors the formation of black hole in cases the dark energy dominates over dark matter. The conclusion is totally opposite to the usually known results.Comment: 7 Latex Pages, RexTex style, No figure

    Role of Brans-Dicke Theory with or without self-interacting potential in cosmic acceleration

    Full text link
    In this work we have studied the possibility of obtaining cosmic acceleration in Brans-Dicke theory with varying or constant ω\omega (Brans- Dicke parameter) and with or without self-interacting potential, the background fluid being barotropic fluid or Generalized Chaplygin Gas. Here we take the power law form of the scale factor and the scalar field. We show that accelerated expansion can also be achieved for high values of ω\omega for closed Universe.Comment: 12 Latex pages, 20 figures, RevTex styl

    Variable Modified Chaplygin Gas in Anisotropic Universe with Kaluza-Klein Metric

    Full text link
    In this work, we have consider Kaluza-Klein Cosmology for anisotropic universe where the universe is filled with variable modified chaplygin gas (VMCG). Here we find normal scalar field ϕ\phi and the self interacting potential V(ϕ)V(\phi) to describe the VMCG Cosmology. Also we graphically analyzed the geometrical parameters named {\it statefinder parameters} in anisotropic Kaluza-Klein model. Next, we consider a Kaluza-Klein model of interacting VMCG with dark matter in the Einstein gravity framework. Here we construct the three dimensional autonomous dynamical system of equations for this interacting model with the assumption that the dark energy and the dark matter are interact between them and for that we also choose the interaction term. We convert that interaction terms to its dimensionless form and perform stability analysis and solve them numerically. We obtain a stable scaling solution of the equations in Kaluza-Klein model and graphically represent solutions.Comment: 11 pages, 13 figure

    Dynamics of interacting phantom and quintessence dark energies

    Full text link
    We present models, in which phantom energy interacts with two different types of dark energies including variable modified Chaplygin gas (VMCG) and new modified Chaplygin gas (NMCG). We then construct potentials for these cases. It has been shown that the potential of the phantom field decreases from a higher value with the evolution of the Universe.Comment: 7 pages, 6 figures, accepted for publication in Astrophysics and Space Scienc

    Higher Dimensional Cosmology with Some Dark Energy Models in Emergent, Logamediate and Intermediate Scenarios of the Universe

    Full text link
    We have considered N-dimensional Einstein field equations in which four-dimensional space-time is described by a FRW metric and that of extra dimensions by an Euclidean metric. We have chosen the exponential forms of scale factors a and d numbers of b in such a way that there is no singularity for evolution of the higher dimensional Universe. We have supposed that the Universe is filled with K-essence, Tachyonic, Normal Scalar Field and DBI-essence. Here we have found the nature of potential of different scalar field and graphically analyzed the potentials and the fields for three scenario namely Emergent Scenario, Logamediate Scenario and Intermediate Scenario. Also graphically we have depicted the geometrical parameters named statefinder parameters and slow-roll parameters in the higher dimensional cosmology with the above mentioned scenarios.Comment: 21 pages, 36 figure

    Generalized Holographic Dark Energy Model

    Full text link
    In this paper, the model of holographic Chaplygin gas has been extended to two general cases: first is the case of modified variable Chaplygin gas and secondly of the viscous generalized Chaplygin gas. The dynamics of the model are expressed by the use of scalar fields and the scalar potentials.Comment: 12 pages, to appear in Eur. Phys. J.
    • 

    corecore