61 research outputs found

    Variable Modified Chaplygin Gas and Accelerating Universe

    Full text link
    In this letter, I have proposed a model of variable modified Chaplygin gas and shown its role in accelerating phase of the universe. I have shown that the equation of state of this model is valid from the radiation era to quiessence model. The graphical representations of statefinder parameters characterize different phase of evolution of the universe. All results presented in the letter concerns the case k=0k=0.Comment: 7 Latex pages, 5 figures, revtex styl

    Role of Modified Chaplygin Gas as a Dark Energy Model in Collapsing Spherically Symmetric Cloud

    Full text link
    In this work, gravitational collapse of a spherical cloud, consists of both dark matter and dark energy in the form of modified Chaplygin gas is studied. It is found that dark energy alone in the form of modified Chaplygin gas forms black hole. Also when both components of the fluid are present then the collapse favors the formation of black hole in cases the dark energy dominates over dark matter. The conclusion is totally opposite to the usually known results.Comment: 7 Latex Pages, RexTex style, No figure

    Holographic Dark Energy Scenario and Variable Modified Chaplygin Gas

    Full text link
    In this letter, we have considered that the universe is filled with normal matter and variable modified Chaplygin gas. Also we have considered the interaction between normal matter and variable modified Chaplygin gas in FRW universe. Then we have considered a correspondence between the holographic dark energy density and interacting variable modified Chaplygin gas energy density. Then we have reconstructed the potential of the scalar field which describes the variable modified Chaplygin cosmology.Comment: 4 latex pages, no figures, RevTeX styl

    Gravitational Collapse in Higher Dimensional Husain Space-Time

    Full text link
    We investigate exact solution in higher dimensional Husain model for a null fluid source with pressure pp and density ρ\rho are related by the following relations (i) p=kρp=k\rho, (ii) p=kρB(v)ραp=k\rho-\frac{B(v)}{\rho^{\alpha}} (variable modified Chaplygin) and (iii) p=kραp=k\rho^{\alpha} (polytropic). We have studied the nature of singularity in gravitational collapse for the above equations of state and also for different choices of the of the parameters kk and BB namely, (i) k=0k=0, B=B= constant (generalized Chaplygin), (ii) B=B= constant (modified Chaplygin). It is found that the nature of singularity is independent of these choices of different equation of state except for variable Chaplygin model. Choices of various parameters are shown in tabular form. Finally, matching of Szekeres model with exterior Husain space-time is done.Comment: 12 latex pages, No figure, RevTex styl

    Material and device characterization of Type-II InAs/GaSb superlattice infrared detectors

    Get PDF
    This work investigates midwave infrared Type-II InAs/GaSb superlattice (SL) grown by molecular beam epitaxy on GaSb substrate. In order to compensate the natural tensile strain of the InAs layers, two different shutter sequences have been explored during the growth. The first one consists of growing an intentional InSb layer at both interfaces (namely GaSb-on-InAs and InAs-on-GaSb interfaces) by migration enhanced epitaxy while the second uses the antimony-for-arsenic exchange to promote an ‘InSb-like’ interface at the GaSb-on-InAs interface. SLs obtained via both methods are compared in terms of structural, morphological and optical properties by means of high-resolution x-ray diffraction, atomic force microscopy and photoluminescence spectroscopy. By using the second method, we obtained a nearly strain-compensated SL on GaSb with a full width at half maximum of 56 arcsec for the first-order SL satellite peak. Relatively smooth surface has been achieved with a root mean square value of about 0.19 nm on a 2 µm × 2 µm scan area. Finally, a p-i-n device structure having a cut-off wavelength of 5.15 µm at 77 K has been demonstrated with a dark-current level of 8.3 × 10−8 A/cm2 at −50 mV and a residual carrier concentration of 9.7 × 1014 cm−3, comparable to the state-of-the-art

    Demonstration of large ionization coefficient ratio in AlAs0.56Sb0.44 lattice matched to InP

    Get PDF
    The electron and hole avalanche multiplication characteristics have been measured in bulk AlAs0.56Sb0.44 p-i-n and n-i-p homojunction diodes, lattice matched to InP, with nominal avalanche region thicknesses of ~0.6 μm, 1.0 μm and 1.5 μm. From these and data from two much thinner devices, the bulk electron and hole impact ionization coefficients (α and β respectively), have been determined over an electric-field range from 220-1250 kV/cm for α and from 360-1250 kV/cm for β for the first time. The α/β ratio is found to vary from 1000 to 2 over this field range, making it the first report of a wide band-gap III-V semiconductor with ionization coefficient ratios similar to or larger than that observed in silicon

    Dynamics of Logamediate and Intermediate Scenarios in the Dark Energy Filled Universe

    Full text link
    We have considered a model of two component mixture i.e., mixture of Chaplygin gas and barotropic fluid with tachyonic field. In the case, when they have no interaction then both of them retain their own properties. Let us consider an energy flow between barotropic and tachyonic fluids. In both the cases we find the exact solutions for the tachyonic field and the tachyonic potential and show that the tachyonic potential follows the asymptotic behavior. We have considered an interaction between these two fluids by introducing a coupling term. Finally, we have considered a model of three component mixture i.e., mixture of tachyonic field, Chaplygin gas and barotropic fluid with or without interaction. The coupling functions decays with time indicating a strong energy flow at the initial period and weak stable interaction at later stage. To keep the observational support of recent acceleration we have considered two particular forms (i) Logamediate Scenario and (ii) Intermediate Scenario, of evolution of the Universe. We have examined the natures of the recent developed statefinder parameters and slow-roll parameters in both scenarios with and without interactions in whole evolution of the universe.Comment: 28 pages, 20 figure

    Dynamics of interacting phantom and quintessence dark energies

    Full text link
    We present models, in which phantom energy interacts with two different types of dark energies including variable modified Chaplygin gas (VMCG) and new modified Chaplygin gas (NMCG). We then construct potentials for these cases. It has been shown that the potential of the phantom field decreases from a higher value with the evolution of the Universe.Comment: 7 pages, 6 figures, accepted for publication in Astrophysics and Space Scienc

    Role of Brans-Dicke Theory with or without self-interacting potential in cosmic acceleration

    Full text link
    In this work we have studied the possibility of obtaining cosmic acceleration in Brans-Dicke theory with varying or constant ω\omega (Brans- Dicke parameter) and with or without self-interacting potential, the background fluid being barotropic fluid or Generalized Chaplygin Gas. Here we take the power law form of the scale factor and the scalar field. We show that accelerated expansion can also be achieved for high values of ω\omega for closed Universe.Comment: 12 Latex pages, 20 figures, RevTex styl

    Interaction between Tachyon and Hessence (or Hantom) dark energies

    Full text link
    In this paper, we have considered that the universe is filled with tachyon, hessence (or hantom) dark energies. Subsequently we have investigated the interactions between tachyon and hessence (hantom) dark energies and calculated the potentials considering the power law form of the scale factor. It has been revealed that the tachyonic potential always decreases and hessence (or hantom) potential increases with corresponding fields. Furthermore, we have considered a correspondence between the hessence (or hantom) dark energy density and new variable modified Chaplygin gas energy density. From this, we have found the expressions of the arbitrary positive constants B0 and C of new variable modified Chaplygin gas
    corecore