8 research outputs found

    Evaluation of the safety and immunological effects of Bacillus Calmette–Guérin in combination with checkpoint inhibitor therapy in a patient with neuroendocrine carcinoma: a case report

    No full text
    Abstract Background Immune checkpoint inhibitors have revolutionized therapy of advanced and metastatic cancers. However, a significant proportion of patients do not respond to immune checkpoint inhibitors or develop resistance. Therefore, novel therapies or combinations of therapies that may act synergistically are needed. It has been suggested that induction of trained immunity may increase the response to immune checkpoint inhibitor therapy, through reprogramming myeloid cells toward an antitumor phenotype. On the other hand, activation of the immune system also carries the risk of potentially sustaining tumorgenicity and increasing immune- related toxicity. Case presentation We report the case of a 37-year-old Dutch male suffering from gastric neuroendocrine carcinoma with liver metastases and high risk for an unfavorable outcome, who was treated with a combination of programmed cell death protein 1 inhibitor nivolumab and the trained immunity-inducer Bacillus Calmette–Guérin vaccine as a salvage therapy. Three doses of BCG vaccine were administered at 3-month intervals, in conjunction with the immune checkpoint inhibitor regimen. At a certain point, radiation therapy was added to the treatment regimen. During the combination of these therapies, the patient developed immune-mediated colitis, which necessitated discontinuation of all treatments. Bacillus Calmette–Guérin vaccination induced a trained immune response with elevated monocyte-derived interleukin-6 and interleukin-1β production capacity. From the first vaccination with Bacillus Calmette–Guérin until 3 months after the last vaccination with Bacillus Calmette–Guérin, the patient displayed only mild progression of the primary tumor and no progression of the metastases. Conclusion In this study, we show the feasibility to combine checkpoint inhibitor therapy with inducers of trained immunity in a patient with an aggressive neuroendocrine tumor. Autoimmune side effects are common under programmed cell death protein 1 inhibitor therapy, which was considered the most likely cause of colitis, although an additive effect of Bacillus Calmette–Guérin vaccination or radiotherapy cannot be excluded. The patient displayed only mild progression during the combination therapy, but larger studies are warranted to fully explore the potential benefit of trained immunity inducers as an adjuvant to immune checkpoint inhibitor therapy

    Bacillus Calmette-Guérin vaccine to reduce healthcare worker absenteeism in COVID-19 pandemic, a randomized controlled trial

    No full text
    OBJECTIVES: The COVID-19 pandemic increases healthcare worker (HCW) absenteeism. The bacillus Calmette-Guérin (BCG) vaccine may provide non-specific protection against respiratory infections through enhancement of trained immunity. We investigated the impact of BCG vaccination on HCW absenteeism during the COVID-19 pandemic. METHODS: HCWs exposed to COVID-19 patients in nine Dutch hospitals were randomized to BCG vaccine or placebo in a 1:1 ratio, and followed for one year using a mobile phone application. The primary endpoint was the self-reported number of days of unplanned absenteeism for any reason. Secondary endpoints included documented COVID-19, acute respiratory symptoms or fever. This was an investigator-funded study, registered at ClinicalTrials.gov (NCT03987919). RESULTS: In March/April 2020, 1511 HCWs were enrolled. The median duration of follow-up was 357 person-days (interquartile range [IQR], 351 to 361). Unplanned absenteeism for any reason was observed in 2.8% of planned working days in the BCG group and 2.7% in the placebo group (adjusted relative risk 0.94; 95% credible interval, 0.78-1.15). Cumulative incidences of documented COVID-19 were 14.2% in the BCG and 15.2% in the placebo group (adjusted hazard ratio (aHR) 0.94; 95% confidence interval (CI), 0.72-1.24). First episodes of self-reported acute respiratory symptoms or fever occurred in 490 (66.2%) and 443 (60.2%) participants, respectively (aHR: 1.13; 95% CI, 0.99-1.28). Thirty-one serious adverse events were reported (13 after BCG, 18 after placebo), none considered related to study medication. CONCLUSIONS: During the COVID-19 pandemic, BCG-vaccination of HCW exposed to COVID-19 patients did not reduce unplanned absenteeism nor documented COVID-19

    Bacillus Calmette-Guérin vaccine to reduce healthcare worker absenteeism in COVID-19 pandemic, a randomized controlled trial

    No full text
    OBJECTIVES: The COVID-19 pandemic increases healthcare worker (HCW) absenteeism. The bacillus Calmette-Guérin (BCG) vaccine may provide non-specific protection against respiratory infections through enhancement of trained immunity. We investigated the impact of BCG vaccination on HCW absenteeism during the COVID-19 pandemic. METHODS: HCWs exposed to COVID-19 patients in nine Dutch hospitals were randomized to BCG vaccine or placebo in a 1:1 ratio, and followed for one year using a mobile phone application. The primary endpoint was the self-reported number of days of unplanned absenteeism for any reason. Secondary endpoints included documented COVID-19, acute respiratory symptoms or fever. This was an investigator-funded study, registered at ClinicalTrials.gov (NCT03987919). RESULTS: In March/April 2020, 1511 HCWs were enrolled. The median duration of follow-up was 357 person-days (interquartile range [IQR], 351 to 361). Unplanned absenteeism for any reason was observed in 2.8% of planned working days in the BCG group and 2.7% in the placebo group (adjusted relative risk 0.94; 95% credible interval, 0.78-1.15). Cumulative incidences of documented COVID-19 were 14.2% in the BCG and 15.2% in the placebo group (adjusted hazard ratio (aHR) 0.94; 95% confidence interval (CI), 0.72-1.24). First episodes of self-reported acute respiratory symptoms or fever occurred in 490 (66.2%) and 443 (60.2%) participants, respectively (aHR: 1.13; 95% CI, 0.99-1.28). Thirty-one serious adverse events were reported (13 after BCG, 18 after placebo), none considered related to study medication. CONCLUSIONS: During the COVID-19 pandemic, BCG-vaccination of HCW exposed to COVID-19 patients did not reduce unplanned absenteeism nor documented COVID-19

    induction of trained immunity in adherent human monocytes.

    No full text
    A growing number of studies show that innate immune cells can undergo functional reprogramming, facilitating a faster and enhanced response to heterologous secondary stimuli. This concept has been termed "trained immunity." We outline here a protocol to recapitulate this in vitro using adherent monocytes from consecutive isolation of peripheral blood mononuclear cells. The induction of trained immunity and the associated functional reprogramming of monocytes is described in detail using β-glucan (from Candida albicans) and Bacillus Calmette-Guérin as examples. For complete details on the use and execution of this protocol, please refer to Repnik et al. (2003) and Bekkering et al. (2016)

    Complement Activation in the Disease Course of Coronavirus Disease 2019 and Its Effects on Clinical Outcomes

    No full text
    Background: Excessive activation of immune responses in coronavirus disease 2019 (COVID-19) is considered to be related to disease severity, complications, and mortality rate. The complement system is an important component of innate immunity and can stimulate inflammation, but its role in COVID-19 is unknown. Methods: A prospective, longitudinal, single center study was performed in hospitalized patients with COVID-19. Plasma concentrations of complement factors C3a, C3c, and terminal complement complex (TCC) were assessed at baseline and during hospital admission. In parallel, routine laboratory and clinical parameters were collected from medical files and analyzed. Results: Complement factors C3a, C3c, and TCC were significantly increased in plasma of patients with COVID-19 compared with healthy controls (P<.05). These complement factors were especially elevated in intensive care unit patients during the entire disease course (P<.005 for C3a and TCC). More intense complement activation was observed in patients who died and in those with thromboembolic events. Conclusions: Patients with COVID-19 demonstrate activation of the complement system, which is related to disease severity. This pathway may be involved in the dysregulated proinflammatory response associated with increased mortality rate and thromboembolic complications. Components of the complement system might have potential as prognostic markers for disease severity and as therapeutic targets in COVID-19
    corecore