2 research outputs found

    Harnessing rhizobia to improve heavy-metal phytoremediation by legumes

    Get PDF
    Rhizobia are bacteria that can form symbiotic associations with plants of the Fabaceae family, during which they reduce atmospheric di-nitrogen to ammonia. The symbiosis between rhizobia and leguminous plants is a fundamental contributor to nitrogen cycling in natural and agricultural ecosystems. Rhizobial microsymbionts are a major reason why legumes can colonize marginal lands and nitrogen-deficient soils. Several leguminous species have been found in metal-contaminated areas, and they often harbor metal-tolerant rhizobia. In recent years, there have been numerous efforts and discoveries related to the genetic determinants of metal resistance by rhizobia, and on the effectiveness of such rhizobia to increase the metal tolerance of host plants. Here, we review the main findings on the metal resistance of rhizobia: the physiological role, evolution, and genetic determinants, and the potential to use native and genetically-manipulated rhizobia as inoculants for legumes in phytoremediation practices

    Metabolically versatile psychrotolerant Antarctic bacterium Pseudomonas sp. ANT_H12B is an efficient producer of siderophores and accompanying metabolites (SAM) useful for agricultural purposes

    No full text
    Abstract Background Bacterial siderophores are chelating compounds with the potential of application in agriculture, due to their plant growth-promoting (PGP) properties, however, high production and purification costs are limiting factors for their wider application. Cost-efficiency of the production could be increased by omitting purification processes, especially since siderophores accompanying metabolites (SAM) often also possess PGP traits. In this study, the metabolism versatility of Pseudomonas sp. ANT_H12B was used for the optimization of siderophores production and the potential of these metabolites and SAM was characterized in the context of PGP properties. Results The metabolic diversity of ANT_H12B was examined through genomic analysis and phenotype microarrays. The strain was found to be able to use numerous C, N, P, and S sources, which allowed for the design of novel media suitable for efficient production of siderophores in the form of pyoverdine (223.50–512.60 μM). Moreover, depending on the culture medium, the pH of the siderophores and SAM solutions varied from acidic (pH  8). In a germination test, siderophores and SAM were shown to have a positive effect on plants, with a significant increase in germination percentage observed in beetroot, pea, and tobacco. The PGP potential of SAM was further elucidated through GC/MS analysis, which revealed other compounds with PGP potential, such as indolic acetic acids, organic acids, fatty acids, sugars and alcohols. These compounds not only improved seed germination but could also potentially be beneficial for plant fitness and soil quality. Conclusions Pseudomonas sp. ANT_H12B was presented as an efficient producer of siderophores and SAM which exhibit PGP potential. It was also shown that omitting downstream processes could not only limit the costs of siderophores production but also improve their agricultural potential
    corecore