434 research outputs found
Ultrafast dynamics of coherent optical phonons and nonequilibrium electrons in transition metals
The femtosecond optical pump-probe technique was used to study dynamics of
photoexcited electrons and coherent optical phonons in transition metals Zn and
Cd as a function of temperature and excitation level. The optical response in
time domain is well fitted by linear combination of a damped harmonic
oscillation because of excitation of coherent phonon and a
subpicosecond transient response due to electron-phonon thermalization. The
electron-phonon thermalization time monotonically increases with temperature,
consistent with the thermomodulation scenario, where at high temperatures the
system can be well explained by the two-temperature model, while below
50 K the nonthermal electron model needs to be applied. As the
lattice temperature increases, the damping of the coherent phonon
increases, while the amplitudes of both fast electronic response and the
coherent phonon decrease. The temperature dependence of the damping of
the phonon indicates that population decay of the coherent optical
phonon due to anharmonic phonon-phonon coupling dominates the decay process. We
present a model that accounts for the observed temperature dependence of the
amplitude assuming the photoinduced absorption mechanism, where the signal
amplitude is proportional to the photoinduced change in the quasiparticle
density. The result that the amplitude of the phonon follows the
temperature dependence of the amplitude of the fast electronic transient
indicates that under the resonant condition both electronic and phononic
responses are proportional to the change in the dielectric function.Comment: 10 pages, 9 figures, to appear in Physical Review
Phonons and related properties of extended systems from density-functional perturbation theory
This article reviews the current status of lattice-dynamical calculations in
crystals, using density-functional perturbation theory, with emphasis on the
plane-wave pseudo-potential method. Several specialized topics are treated,
including the implementation for metals, the calculation of the response to
macroscopic electric fields and their relevance to long wave-length vibrations
in polar materials, the response to strain deformations, and higher-order
responses. The success of this methodology is demonstrated with a number of
applications existing in the literature.Comment: 52 pages, 14 figures, submitted to Review of Modern Physic
Non-linear optical susceptibilities, Raman efficiencies and electrooptic tensors from first-principles density functional perturbation theory
The non-linear response of infinite periodic solids to homogenous electric
fields and collective atomic displacements is discussed in the framework of
density functional perturbation theory. The approach is based on the 2n + 1
theorem applied to an electric-field-dependent energy functional. We report the
expressions for the calculation of the non-linear optical susceptibilities,
Raman scattering efficiencies and electrooptic coefficients. Different
formulations of third-order energy derivatives are examined and their
convergence with respect to the k-point sampling is discussed. We apply our
method to a few simple cases and compare our results to those obtained with
distinct techniques. Finally, we discuss the effect of a scissors correction on
the EO coefficients and non-linear optical susceptibilities
Linear-response theory and lattice dynamics: a muffin-tin orbital approach
A detailed description of a method for calculating static linear-response
functions in the problem of lattice dynamics is presented. The method is based
on density functional theory and it uses linear muffin-tin orbitals as a basis
for representing first-order corrections to the one-electron wave functions. As
an application we calculate phonon dispersions in Si and NbC and find good
agreement with experiments.Comment: 18 pages, Revtex, 2 ps figures, uuencoded, gzip'ed, tar'ed fil
Anharmonic Decay of Vibrational States in Amorphous Silicon
Anharmonic decay rates are calculated for a realistic atomic model of
amorphous silicon. The results show that the vibrational states decay on
picosecond timescales and follow the two-mode density of states, similar to
crystalline silicon, but somewhat faster. Surprisingly little change occurs for
localized states. These results disagree with a recent experiment.Comment: 10 pages, 4 Postscript figure
- …