626 research outputs found

    Oxidation of Alpha-Ketoglutarate Is Required for Reductive Carboxylation in Cancer Cells with Mitochondrial Defects

    Get PDF
    SummaryMammalian cells generate citrate by decarboxylating pyruvate in the mitochondria to supply the tricarboxylic acid (TCA) cycle. In contrast, hypoxia and other impairments of mitochondrial function induce an alternative pathway that produces citrate by reductively carboxylating α-ketoglutarate (AKG) via NADPH-dependent isocitrate dehydrogenase (IDH). It is unknown how cells generate reducing equivalents necessary to supply reductive carboxylation in the setting of mitochondrial impairment. Here, we identified shared metabolic features in cells using reductive carboxylation. Paradoxically, reductive carboxylation was accompanied by concomitant AKG oxidation in the TCA cycle. Inhibiting AKG oxidation decreased reducing equivalent availability and suppressed reductive carboxylation. Interrupting transfer of reducing equivalents from NADH to NADPH by nicotinamide nucleotide transhydrogenase increased NADH abundance and decreased NADPH abundance while suppressing reductive carboxylation. The data demonstrate that reductive carboxylation requires bidirectional AKG metabolism along oxidative and reductive pathways, with the oxidative pathway producing reducing equivalents used to operate IDH in reverse

    Molecular crowding defines a common origin for the Warburg effect in proliferating cells and the lactate threshold in muscle physiology

    Get PDF
    Aerobic glycolysis is a seemingly wasteful mode of ATP production that is seen both in rapidly proliferating mammalian cells and highly active contracting muscles, but whether there is a common origin for its presence in these widely different systems is unknown. To study this issue, here we develop a model of human central metabolism that incorporates a solvent capacity constraint of metabolic enzymes and mitochondria, accounting for their occupied volume densities, while assuming glucose and/or fatty acid utilization. The model demonstrates that activation of aerobic glycolysis is favored above a threshold metabolic rate in both rapidly proliferating cells and heavily contracting muscles, because it provides higher ATP yield per volume density than mitochondrial oxidative phosphorylation. In the case of muscle physiology, the model also predicts that before the lactate switch, fatty acid oxidation increases, reaches a maximum, and then decreases to zero with concomitant increase in glucose utilization, in agreement with the empirical evidence. These results are further corroborated by a larger scale model, including biosynthesis of major cell biomass components. The larger scale model also predicts that in proliferating cells the lactate switch is accompanied by activation of glutaminolysis, another distinctive feature of the Warburg effect. In conclusion, intracellular molecular crowding is a fundamental constraint for cell metabolism in both rapidly proliferating- and non-proliferating cells with high metabolic demand. Addition of this constraint to metabolic flux balance models can explain several observations of mammalian cell metabolism under steady state conditions

    Cytoplasmic p53 couples oncogene-driven glucose metabolism to apoptosis and is a therapeutic target in glioblastoma.

    Get PDF
    Cross-talk among oncogenic signaling and metabolic pathways may create opportunities for new therapeutic strategies in cancer. Here we show that although acute inhibition of EGFR-driven glucose metabolism induces only minimal cell death, it lowers the apoptotic threshold in a subset of patient-derived glioblastoma (GBM) cells. Mechanistic studies revealed that after attenuated glucose consumption, Bcl-xL blocks cytoplasmic p53 from triggering intrinsic apoptosis. Consequently, targeting of EGFR-driven glucose metabolism in combination with pharmacological stabilization of p53 with the brain-penetrant small molecule idasanutlin resulted in synthetic lethality in orthotopic glioblastoma xenograft models. Notably, neither the degree of EGFR-signaling inhibition nor genetic analysis of EGFR was sufficient to predict sensitivity to this therapeutic combination. However, detection of rapid inhibitory effects on [18F]fluorodeoxyglucose uptake, assessed through noninvasive positron emission tomography, was an effective predictive biomarker of response in vivo. Together, these studies identify a crucial link among oncogene signaling, glucose metabolism, and cytoplasmic p53, which may potentially be exploited for combination therapy in GBM and possibly other malignancies

    Control of intestinal stem cell function and proliferation by mitochondrial pyruvate metabolism.

    Get PDF
    Most differentiated cells convert glucose to pyruvate in the cytosol through glycolysis, followed by pyruvate oxidation in the mitochondria. These processes are linked by the mitochondrial pyruvate carrier (MPC), which is required for efficient mitochondrial pyruvate uptake. In contrast, proliferative cells, including many cancer and stem cells, perform glycolysis robustly but limit fractional mitochondrial pyruvate oxidation. We sought to understand the role this transition from glycolysis to pyruvate oxidation plays in stem cell maintenance and differentiation. Loss of the MPC in Lgr5-EGFP-positive stem cells, or treatment of intestinal organoids with an MPC inhibitor, increases proliferation and expands the stem cell compartment. Similarly, genetic deletion of the MPC in Drosophila intestinal stem cells also increases proliferation, whereas MPC overexpression suppresses stem cell proliferation. These data demonstrate that limiting mitochondrial pyruvate metabolism is necessary and sufficient to maintain the proliferation of intestinal stem cells

    Analysis of Tumor Metabolism Reveals Mitochondrial Glucose Oxidation in Genetically Diverse Human Glioblastomas in the Mouse Brain In Vivo

    Get PDF
    SummaryDysregulated metabolism is a hallmark of cancer cell lines, but little is known about the fate of glucose and other nutrients in tumors growing in their native microenvironment. To study tumor metabolism in vivo, we used an orthotopic mouse model of primary human glioblastoma (GBM). We infused 13C-labeled nutrients into mice bearing three independent GBM lines, each with a distinct set of mutations. All three lines displayed glycolysis, as expected for aggressive tumors. They also displayed unexpected metabolic complexity, oxidizing glucose via pyruvate dehydrogenase and the citric acid cycle, and using glucose to supply anaplerosis and other biosynthetic activities. Comparing the tumors to surrounding brain revealed obvious metabolic differences, notably the accumulation of a large glutamine pool within the tumors. Many of these same activities were conserved in cells cultured ex vivo from the tumors. Thus GBM cells utilize mitochondrial glucose oxidation during aggressive tumor growth in vivo

    Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline

    Get PDF
    The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline

    Activation of β-Catenin by Oncogenic PIK3CA and EGFR Promotes Resistance to Glucose Deprivation by Inducing a Strong Antioxidant Response

    Get PDF
    Glucose is an essential fuel for cell survival and its availability limits aberrant cellular proliferation. We have hypothesized that specific cancer mutations regulate metabolic response(s) to glucose deprivation (GD). By means of somatic knock-in cellular models, we have analyzed the response to glucose deprivation in cells carrying the frequent delE746-A750EGFR, G13DKRAS or E545KPIK3CA cancer alleles. We demonstrate that, in mammary epithelial cells, glucose has an essential antioxidant function and that these cells are very sensitive to GD. Conversely, isogenic cells carrying the delE746-A750EGFR or the E545KPIK3CA, but not the G13DKRAS allele, display high tolerance to GD by stimulating the expression of anti-oxidant genes (MnSOD and catalase). This adaptive transcriptional response is mediated by the activation of WNT/β-catenin and FOXO4 signalling. Our data highlights a new functional synergism between oncogenic EGFR and PIK3CA with WNT/β-catenin conferring high tolerance to oxidative stress generated by nutrient deprivation

    MUC1-C Oncoprotein Regulates Glycolysis and Pyruvate Kinase m2 Activity in Cancer Cells

    Get PDF
    Aerobic glycolysis in cancer cells is regulated by multiple effectors that include Akt and pyruvate kinase M2 (PKM2). Mucin 1 (MUC1) is a heterodimeric glycoprotein that is aberrantly overexpressed by human breast and other carcinomas. Here we show that transformation of rat fibroblasts by the oncogenic MUC1-C subunit is associated with Akt-mediated increases in glucose uptake and lactate production, consistent with the stimulation of glycolysis. The results also demonstrate that the MUC1-C cytoplasmic domain binds directly to PKM2 at the B- and C-domains. Interaction between the MUC1-C cytoplasmic domain Cys-3 and the PKM2 C-domain Cys-474 was found to stimulate PKM2 activity. Conversely, epidermal growth factor receptor (EGFR)-mediated phosphorylation of the MUC1-C cytoplasmic domain on Tyr-46 conferred binding to PKM2 Lys-433 and inhibited PKM2 activity. In human breast cancer cells, silencing MUC1-C was associated with decreases in glucose uptake and lactate production, confirming involvement of MUC1-C in the regulation of glycolysis. In addition, EGFR-mediated phosphorylation of MUC1-C in breast cancer cells was associated with decreases in PKM2 activity. These findings indicate that the MUC1-C subunit regulates glycolysis and that this response is conferred in part by PKM2. Thus, the overexpression of MUC1-C oncoprotein in diverse human carcinomas could be of importance to the Warburg effect of aerobic glycolysis

    Mutations in mitochondrial enzyme GPT2 cause metabolic dysfunction and neurological disease with developmental and progressive features

    Get PDF
    Mutations that cause neurological phenotypes are highly informative with regard to mechanisms governing human brain function and disease. We report autosomal recessive mutations in the enzyme glutamate pyruvate transaminase 2 (GPT2) in large kindreds initially ascertained for intellectual and developmental disability (IDD). GPT2 [also known as alanine transaminase 2 (ALT2)] is one of two related transaminases that catalyze the reversible addition of an amino group from glutamate to pyruvate, yielding alanine and α-ketoglutarate. In addition to IDD, all affected individuals show postnatal microcephaly and ∼80% of those followed over time show progressive motor symptoms, a spastic paraplegia. Homozygous nonsense p.Arg404* and missense p.Pro272Leu mutations are shown biochemically to be loss of function. The GPT2 gene demonstrates increasing expression in brain in the early postnatal period, and GPT2 protein localizes to mitochondria. Akin to the human phenotype, Gpt2-null mice exhibit reduced brain growth. Through metabolomics and direct isotope tracing experiments, we find a number of metabolic abnormalities associated with loss of Gpt2. These include defects in amino acid metabolism such as low alanine levels and elevated essential amino acids. Also, we find defects in anaplerosis, the metabolic process involved in replenishing TCA cycle intermediates. Finally, mutant brains demonstrate misregulated metabolites in pathways implicated in neuroprotective mechanisms previously associated with neurodegenerative disorders. Overall, our data reveal an important role for the GPT2 enzyme in mitochondrial metabolism with relevance to developmental as well as potentially to neurodegenerative mechanisms.National Institute of Neurological Diseases and Stroke (U.S.) (R01NS035129)United States. National Institutes of Health (R21TW008223)National Cancer Institute (U.S.) (R01CA157996

    Short Interspersed Element (SINE) Depletion and Long Interspersed Element (LINE) Abundance Are Not Features Universally Required for Imprinting

    Get PDF
    Genomic imprinting is a form of gene dosage regulation in which a gene is expressed from only one of the alleles, in a manner dependent on the parent of origin. The mechanisms governing imprinted gene expression have been investigated in detail and have greatly contributed to our understanding of genome regulation in general. Both DNA sequence features, such as CpG islands, and epigenetic features, such as DNA methylation and non-coding RNAs, play important roles in achieving imprinted expression. However, the relative importance of these factors varies depending on the locus in question. Defining the minimal features that are absolutely required for imprinting would help us to understand how imprinting has evolved mechanistically. Imprinted retrogenes are a subset of imprinted loci that are relatively simple in their genomic organisation, being distinct from large imprinting clusters, and have the potential to be used as tools to address this question. Here, we compare the repeat element content of imprinted retrogene loci with non-imprinted controls that have a similar locus organisation. We observe no significant differences that are conserved between mouse and human, suggesting that the paucity of SINEs and relative abundance of LINEs at imprinted loci reported by others is not a sequence feature universally required for imprinting
    corecore