2,245 research outputs found

    Show Me the Money?: Washington Adopts the Cost Prohibitive Defense to Arbitration Clauses in Consumer Contracts

    Get PDF
    The scope of this Note focuses on whether the courts have adequately corrected the substantive failures of mandatory arbitration agreements when they permit consumers to prove prohibitive costs. Part II of this Note explores the origin and history behind the adoption of the FAA and the legislative desire to place parties of equal bargaining power in a position to arbitrate. Part III examines the acceptance of this defense in other jurisdictions. Part IV considers the Mendez case and analyzes Washington\u27s newly adopted approach to invalidate mandatory arbitration clauses in consumer contracts. Part V illustrates the appropriateness of this defense and addresses the benefits and burdens of applying it in the consumer context. Part VI concludes the Note, identifying the unjustified presumptions that undercut the value of arbitration as an alternative forum to resolve disputes in the consumer context and evaluating the cost prohibitive defense as an adequate response

    Show Me the Money?: Washington Adopts the Cost Prohibitive Defense to Arbitration Clauses in Consumer Contracts

    Get PDF
    The scope of this Note focuses on whether the courts have adequately corrected the substantive failures of mandatory arbitration agreements when they permit consumers to prove prohibitive costs. Part II of this Note explores the origin and history behind the adoption of the FAA and the legislative desire to place parties of equal bargaining power in a position to arbitrate. Part III examines the acceptance of this defense in other jurisdictions. Part IV considers the Mendez case and analyzes Washington\u27s newly adopted approach to invalidate mandatory arbitration clauses in consumer contracts. Part V illustrates the appropriateness of this defense and addresses the benefits and burdens of applying it in the consumer context. Part VI concludes the Note, identifying the unjustified presumptions that undercut the value of arbitration as an alternative forum to resolve disputes in the consumer context and evaluating the cost prohibitive defense as an adequate response

    Coarse-grained microscopic model of glass formers

    Full text link
    We introduce a coarse-grained model for atomic glass formers. Its elements are physically motivated local microscopic dynamical rules parameterized by observables. Results of the model are established and used to interpret the measured behaviors of supercooled fluids approaching glass transitions. The model predicts the presence of a crossover from hierarchical super-Arrhenius dynamics at short length scales to diffusive Arrhenius dynamics at large length scales. This prediction distinguishes our model from other theories of glass formers and can be tested by experiment.Comment: 5 pages, 5 figure

    Stability of critical bubble in stretched fluid of square-gradient density-functional model with triple-parabolic free energy

    Full text link
    The square-gradient density-functional model with triple-parabolic free energy, that was used previously to study the homogeneous bubble nucleation [J. Chem. Phys. 129, 104508 (2008)], is used to study the stability of the critical bubble nucleated within the bulk under-saturated stretched fluid. The stability of the bubble is studied by solving the Schr\"odinger equation for the fluctuation. The negative eigenvalue corresponds to the unstable growing mode of the fluctuation. Our results show that there is only one negative eigenvalue whose eigenfunction represents the fluctuation that corresponds to the isotropically growing or shrinking nucleus. In particular, this negative eigenvalue survives up to the spinodal point. Therefore the critical bubble is not fractal or ramified near the spinodal.Comment: 9 pages, 8 figures, Journal of Chemical Physics accepted for publicatio

    Heterogeneous condensation of the Lennard-Jones vapor onto a nanoscale seed particle

    Full text link
    The heterogeneous condensation of a Lennard-Jones vapor onto a nanoscale seed particle is studied using molecular dynamics simulations. Measuring the nucleation rate and the height of the free energy barrier using the mean first passage time method shows that the presence of a weakly interacting seed has little effect on the work of forming very small cluster embryos but accelerates the rate by lowering the barrier for larger clusters. We suggest that this results from a competition between the energetic and entropic features of cluster formation in the bulk and at the heterogeneity. As the interaction is increased, the free energy of formation is reduced for all cluster sizes. We also develop a simple phenomenological model of film formation on a small seed that captures the general features of the nucleation process for small heterogeneities. A comparison of our simulation results with the model shows that heterogeneous classical nucleation theory provides a good estimate of the critical size of the film but significantly over-estimates the size of the barrier.Comment: 9 pages, 10 figures, In Print J. Chem. Phy

    Mode Coupling relaxation scenario in a confined glass former

    Full text link
    Molecular dynamics simulations of a Lennard-Jones binary mixture confined in a disordered array of soft spheres are presented. The single particle dynamical behavior of the glass former is examined upon supercooling. Predictions of mode coupling theory are satisfied by the confined liquid. Estimates of the crossover temperature are obtained by power law fit to the diffusion coefficients and relaxation times of the late α\alpha region. The bb exponent of the von Schweidler law is also evaluated. Similarly to the bulk, different values of the exponent γ\gamma are extracted from the power law fit to the diffusion coefficients and relaxation times.Comment: 5 pages, 4 figures, changes in the text, accepted for publication on Europhysics Letter

    Is Random Close Packing of Spheres Well Defined?

    Full text link
    Despite its long history, there are many fundamental issues concerning random packings of spheres that remain elusive, including a precise definition of random close packing (RCP). We argue that the current picture of RCP cannot be made mathematically precise and support this conclusion via a molecular dynamics study of hard spheres using the Lubachevsky-Stillinger compression algorithm. We suggest that this impasse can be broken by introducing the new concept of a maximally random jammed state, which can be made precise.Comment: 6 pages total, 2 figure

    Potential energy landscape-based extended van der Waals equation

    Full text link
    The inherent structures ({\it IS}) are the local minima of the potential energy surface or landscape, U(r)U({\bf r}), of an {\it N} atom system. Stillinger has given an exact {\it IS} formulation of thermodynamics. Here the implications for the equation of state are investigated. It is shown that the van der Waals ({\it vdW}) equation, with density-dependent aa and bb coefficients, holds on the high-temperature plateau of the averaged {\it IS} energy. However, an additional ``landscape'' contribution to the pressure is found at lower TT. The resulting extended {\it vdW} equation, unlike the original, is capable of yielding a water-like density anomaly, flat isotherms in the coexistence region {\it vs} {\it vdW} loops, and several other desirable features. The plateau energy, the width of the distribution of {\it IS}, and the ``top of the landscape'' temperature are simulated over a broad reduced density range, 2.0ρ0.202.0 \ge \rho \ge 0.20, in the Lennard-Jones fluid. Fits to the data yield an explicit equation of state, which is argued to be useful at high density; it nevertheless reproduces the known values of aa and bb at the critical point

    A test of non-equilibrium thermodynamics in glassy systems: the soft-sphere case

    Full text link
    The scaling properties of the soft-sphere potential allow the derivation of an exact expression for the pressure of a frozen liquid, i.e., the pressure corresponding to configurations which are local minima in its multidimensional potential energy landscape. The existence of such a relation offers the unique possibility for testing the recently proposed extension of the liquid free energy to glassy out-of-equilibrium conditions and the associated expression for the temperature of the configurational degrees of freedom. We demonstrate that the non-equilibrium free energy provides an exact description of the soft-sphere pressure in glass states

    On the Wang-Landau Method for Off-Lattice Simulations in the "Uniform" Ensemble

    Full text link
    We present a rigorous derivation for off-lattice implementations of the so-called "random-walk" algorithm recently introduced by Wang and Landau [PRL 86, 2050 (2001)]. Originally developed for discrete systems, the algorithm samples configurations according to their inverse density of states using Monte-Carlo moves; the estimate for the density of states is refined at each simulation step and is ultimately used to calculate thermodynamic properties. We present an implementation for atomic systems based on a rigorous separation of kinetic and configurational contributions to the density of states. By constructing a "uniform" ensemble for configurational degrees of freedom--in which all potential energies, volumes, and numbers of particles are equally probable--we establish a framework for the correct implementation of simulation acceptance criteria and calculation of thermodynamic averages in the continuum case. To demonstrate the generality of our approach, we perform sample calculations for the Lennard-Jones fluid using two implementation variants and in both cases find good agreement with established literature values for the vapor-liquid coexistence locus.Comment: 21 pages, 4 figure
    corecore