49 research outputs found

    Magneto-Optical Trapping and Sub-Doppler Cooling of a Polyatomic Molecule

    Full text link
    We report magneto-optical trapping (MOT) of a polyatomic molecule, calcium monohydroxide (CaOH). The MOT contains 2.0(5)×1042.0(5)\times 10^4 CaOH molecules at a peak density of 3.0(8)×1063.0(8)\times10^{6} cm−3^{-3}. CaOH molecules are further sub-Doppler laser cooled in an optical molasses, to a temperature of 110(4) μ\muK. The temperatures and densities achieved here make CaOH a viable candidate for a wide variety of quantum science applications, including the creation of optical tweezer arrays of CaOH molecules. This work also suggests that laser cooling and magneto-optical trapping of many other polyatomic species will be both feasible and practical.Comment: 6 pages, 4 figure

    Probing the limits of optical cycling in a predissociative diatomic molecule

    Full text link
    Molecular predissociation is the spontaneous, nonradiative bond breaking process that can occur upon excitation. In the context of laser cooling, predissociation is an unwanted consequence of molecular structure that limits the ability to scatter a large number of photons required to reach the ultracold regime. Unlike rovibrational branching, predissociation is irreversible since the fragments fly apart with high kinetic energy. Of particular interest is the simple diatomic molecule, CaH, for which the two lowest electronically excited states used in laser cooling lie above the dissociation threshold of the ground potential. In this work, we present measurements and calculations that quantify the predissociation probabilities affecting the cooling cycle. The results allow us to design a laser cooling scheme that will enable the creation of an ultracold and optically trapped cloud of CaH molecules. In addition, we use the results to propose a two-photon pathway to controlled dissociation of the molecules, in order to gain access to their ultracold fragments, including hydrogen.Comment: 16 pages, 4 figure

    Dynamics of an adenine-adenine RNA conformational switch from discrete path sampling.

    Get PDF
    The study of "rare event" dynamics can be challenging despite continuing advances in computer hardware. A wide variety of methods based on the master equation approach have been developed to tackle such problems, where the focus is on Markovian dynamics between appropriately defined states. In this contribution, we employ the discrete path sampling approach to characterize pathways and rates for an adenine-adenine RNA conformational switch. The underlying free energy landscape supports competing structures separated by relatively high barriers, with the two principal funnels leading to the major and minor conformations identified by NMR experiments. The interconversion time scale is predicted to be a few hundred seconds, consistent with the experimental lower bound estimates. We find that conformational switching occurs via stacked intermediates, through a sliding mechanism, in agreement with a previous simulation study. By retaining full dimensionality and avoiding low-dimensional projections, the mechanism can be described at an atomistic level of detail.EPSRC, ERC

    Bad metallic transport in a cold atom Fermi-Hubbard system

    Full text link
    Charge transport is a revealing probe of the quantum properties of materials. Strong interactions can blur charge carriers resulting in a poorly understood "quantum soup". Here we study the conductivity of the Fermi-Hubbard model, a testing ground for strong interaction physics, in a clean quantum system - ultracold 6^6Li in a 2D optical lattice. We determine the charge diffusion constant in our system by measuring the relaxation of an imposed density modulation and modeling its decay hydrodynamically. The diffusion constant is converted to a resistivity, which exhibits a linear temperature dependence and exceeds the Mott-Ioffe-Regel limit, two characteristic signatures of a bad metal. The techniques we develop here may be applied to measurements of other transport quantities, including the optical conductivity and thermopower

    Extent of piriform cortex resection in children with temporal lobe epilepsy

    Get PDF
    OBJECTIVE: A greater extent of resection of the temporal portion of the piriform cortex (PC) has been shown to be associated with higher likelihood of seizure freedom in adults undergoing anterior temporal lobe resection (ATLR) for drug-resistant temporal lobe epilepsy (TLE). There have been no such studies in children, therefore this study aimed to investigate this association in a pediatric cohort. METHODS: A retrospective, neuroimaging cohort study of children with TLE who underwent ATLR between 2012 and 2021 was undertaken. The PC, hippocampal and amygdala volumes were measured on the preoperative and postoperative T1-weighted MRI. Using these volumes, the extent of resection per region was compared between the seizure-free and not seizure-free groups. RESULTS: In 50 children (median age 9.5 years) there was no significant difference between the extent of resection of the temporal PC in the seizure-free (median = 50%, n = 33/50) versus not seizure-free (median = 40%, n = 17/50) groups (p = 0.26). In a sub-group of 19 with ipsilateral hippocampal atrophy (quantitatively defined by ipsilateral-to-contralateral asymmetry), the median extent of temporal PC resection was greater in children who were seizure-free (53%) versus those not seizure-free (19%) (p = 0.009). INTERPRETATION: This is the first study demonstrating that, in children with TLE and hippocampal atrophy, more extensive temporal PC resection is associated with a greater chance of seizure freedom-compatible with an adult series in which 85% of patients had hippocampal sclerosis. In a combined group of children with and without hippocampal atrophy, the extent of PC resection was not associated with seizure outcome, suggesting different epileptogenic networks within this cohort

    An objective validation of polyp and instrument segmentation methods in colonoscopy through Medico 2020 polyp segmentation and MedAI 2021 transparency challenges

    Full text link
    Automatic analysis of colonoscopy images has been an active field of research motivated by the importance of early detection of precancerous polyps. However, detecting polyps during the live examination can be challenging due to various factors such as variation of skills and experience among the endoscopists, lack of attentiveness, and fatigue leading to a high polyp miss-rate. Deep learning has emerged as a promising solution to this challenge as it can assist endoscopists in detecting and classifying overlooked polyps and abnormalities in real time. In addition to the algorithm's accuracy, transparency and interpretability are crucial to explaining the whys and hows of the algorithm's prediction. Further, most algorithms are developed in private data, closed source, or proprietary software, and methods lack reproducibility. Therefore, to promote the development of efficient and transparent methods, we have organized the "Medico automatic polyp segmentation (Medico 2020)" and "MedAI: Transparency in Medical Image Segmentation (MedAI 2021)" competitions. We present a comprehensive summary and analyze each contribution, highlight the strength of the best-performing methods, and discuss the possibility of clinical translations of such methods into the clinic. For the transparency task, a multi-disciplinary team, including expert gastroenterologists, accessed each submission and evaluated the team based on open-source practices, failure case analysis, ablation studies, usability and understandability of evaluations to gain a deeper understanding of the models' credibility for clinical deployment. Through the comprehensive analysis of the challenge, we not only highlight the advancements in polyp and surgical instrument segmentation but also encourage qualitative evaluation for building more transparent and understandable AI-based colonoscopy systems

    Prospective, multicentre study of screening, investigation and management of hyponatraemia after subarachnoid haemorrhage in the UK and Ireland

    Get PDF
    Background: Hyponatraemia often occurs after subarachnoid haemorrhage (SAH). However, its clinical significance and optimal management are uncertain. We audited the screening, investigation and management of hyponatraemia after SAH. Methods: We prospectively identified consecutive patients with spontaneous SAH admitted to neurosurgical units in the United Kingdom or Ireland. We reviewed medical records daily from admission to discharge, 21 days or death and extracted all measurements of serum sodium to identify hyponatraemia (<135 mmol/L). Main outcomes were death/dependency at discharge or 21 days and admission duration >10 days. Associations of hyponatraemia with outcome were assessed using logistic regression with adjustment for predictors of outcome after SAH and admission duration. We assessed hyponatraemia-free survival using multivariable Cox regression. Results: 175/407 (43%) patients admitted to 24 neurosurgical units developed hyponatraemia. 5976 serum sodium measurements were made. Serum osmolality, urine osmolality and urine sodium were measured in 30/166 (18%) hyponatraemic patients with complete data. The most frequently target daily fluid intake was >3 L and this did not differ during hyponatraemic or non-hyponatraemic episodes. 26% (n/N=42/164) patients with hyponatraemia received sodium supplementation. 133 (35%) patients were dead or dependent within the study period and 240 (68%) patients had hospital admission for over 10 days. In the multivariable analyses, hyponatraemia was associated with less dependency (adjusted OR (aOR)=0.35 (95% CI 0.17 to 0.69)) but longer admissions (aOR=3.2 (1.8 to 5.7)). World Federation of Neurosurgical Societies grade I–III, modified Fisher 2–4 and posterior circulation aneurysms were associated with greater hazards of hyponatraemia. Conclusions: In this comprehensive multicentre prospective-adjusted analysis of patients with SAH, hyponatraemia was investigated inconsistently and, for most patients, was not associated with changes in management or clinical outcome. This work establishes a basis for the development of evidence-based SAH-specific guidance for targeted screening, investigation and management of high-risk patients to minimise the impact of hyponatraemia on admission duration and to improve consistency of patient care
    corecore