
Dynamics of an Adenine-Adenine RNA Conformational Switch From Discrete Path

Sampling

Debayan Chakraborty

Department of Chemistry, The University of Texas at Austin, Austin, TX 78712,

USA.a)

David J. Wales

Department of Chemistry, University of Cambridge, Lensfield Road,

Cambridge CB2 1EW, UKb)

The study of ‘rare event’ dynamics can be challenging despite continuing advances

in computer hardware. A wide variety of methods based on the master equation ap-

proach have been developed to tackle such problems, where the focus is on Markovian

dynamics between appropriately defined states. In this contribution we employ the

discrete path sampling approach to characterize pathways and rates for an adenine-

adenine RNA conformational switch. The underlying free energy landscape supports

competing structures separated by relatively high barriers, with the two principal fun-

nels leading to the major and minor conformations identified by NMR experiments.

The interconversion time scale is predicted to be a few hundred seconds, consistent

with the experimental lower bound estimates. We find that conformational switch-

ing occurs via stacked intermediates, through a sliding mechanism, in agreement

with a previous simulation study. By retaining full dimensionality, and avoiding low-

dimensional projections, the mechanism can be described at an atomistic level of

detail.
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I. INTRODUCTION

Structural plasticity plays a key role in endowing RNA with unique capabilities, and is

critical to its function, both as a catalyst and a binding partner.1,2 Conformational tran-

sitions in RNA occur over a hierarchy of timescales,2 and are often associated with long

waiting times, corresponding to kinetic trapping in metastable states.3–5 The manifestation

of such rare event dynamics makes it di�cult to obtain detailed insight into conformational

transitions of biological relevance using conventional simulation techniques.

Considerable e↵ort has been directed towards advancing enhanced sampling methods,

many of which are now quite routinely used in unraveling various facets of RNA dynamics

and thermodynamics. For example, di↵erent implementations of replica-exchange molecular

dynamics (REMD) and parallel tempering,6–8 as well as metadynamics,9,10 have been used

to explore the free energy landscapes of prototypical RNA hairpins, and hence suggest

possible folding pathways. Applications of these thermodynamic sampling techniques to

more complex RNA molecules are also emerging.11,12 However, extracting meaningful kinetic

information is not straightforward for these methods, although various recipes for recovering

dynamical information have been suggested.13,14

Alternative e↵orts focused upon dynamics have employed the master equation framework15,16

to construct kinetic transition networks.17–19 This approach has a long history in the context

of chemical kinetics, and was probably first applied to relaxation dynamics in atomic clusters

by Kunz and coworkers.20–23 There have now been numerous applications to dynamical tran-

sitions in proteins, and more recently to RNA folding and conformational switching.24,25 Two

distinct approaches have been employed to construct the corresponding networks. Methods

based on geometry optimization characterize stationary points of the potential energy sur-

face, namely local minima and the transition states that connect them via steepest-descent

paths, with post-processing using the tools of statistical mechanics and unimolecular rate

theory.19,26,27 Alternatively, if the conformations of interest can be connected using explicit

dynamics, then a network can be constructed by defining suitable states and their inter-

conversion rates; this approach is often called Markov state modeling.28–35 A variety of

rare events methods based upon explicit dynamics have now been developed that focus on

enhanced sampling in some form.36–48 The geometry optimization and explicit dynamics

methodologies are quite complementary: geometry optimization schemes do not su↵er from

2



A14

G13

A15G4

A5

A6

G4

A5

G13

A15

A14

A6

Adenine-Adenine Conformational Switch

FIG. 1: The RNA duplex considered in this study. In the minor form (shown on the left)

A5 is stacked in between A6 and A15. In the major form (shown on the right) A14 is

stacked between A6 and A15. In both duplex conformations, the central adenine-adenine

base pair exhibits a trans-Hoogsteen/sugar-edge hydrogen-bonding pattern.

trapping due to high barriers and slow time scales, but entail additional approximations in

extracting observable properties.

In the present contribution we focus on networks constructed from geometry optimization,

which exploit a coarse-grained description of the underlying landscape in terms of stationary

points, where transition pathways between di↵erent metastable conformations are defined

by ‘discrete paths’, consisting of interconnected minima and transition states (saddle points

of index one49). The discrete path sampling (DPS) technique50,51 is used to systematically

sample such discrete paths between states of interest to construct a transition network,

which encodes the thermodynamic as well as kinetic information. In our recent studies on

nucleic acid dynamics52–57 we have used DPS to reproduce and explain experimental results

from the viewpoint of energy landscape theory, providing atomistic level insight into the

pathways underlying key conformational transitions.

We employ the DPS technique to characterize the conformational switching pathways

for a non-canonical adenine-adenine (AA) base pair58 located at the center of a nine base
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pair RNA duplex (Figure 1). Experiments by Turner and coworkers59 indicate that the two

adenines can exchange positions and switch between major and minor forms, which di↵er

only in the base-stacking pattern along the minor groove. Based on NMR chemical shifts,

the authors estimated a lower bound for the exchange rate of (300 s�1). In a subsequent

study,60 Mathews and coworkers employed targeted molecular dynamics (TMD), as well as

the nudged-elastic-band (NEB)61,62 method, to map out pathways between the major and the

minor conformations. Their results suggested that the conformational switch preferentially

occurs via intermediates where the two adenines are stacked, rather than hydrogen-bonded.

Surprisingly, various combinations of force fields and simulation strategies predicted the

minor form to be thermodynamically more stable compared to the major form, which seems

inconsistent with experiment.

Our results indicate that the major and minor forms predicted by the NMR experiments

lie at the bottom of two principal funnels on the energy landscape. The most kinetically

relevant transition pathway between the two conformations features stacked intermediates,

in agreement with Mathews and coworkers.60 Our calculated conformational switching rate

from the minor to the major form is 165.9 s�1, in quantitative agreement with the experi-

mental lower bound estimate.60 Furthermore, we obtain the correct ordering of free energies

for the major and the minor forms. It is possible that force field inaccuracies, or problems

associated with the projections associated with low-dimensional reaction coordinates, may

have resulted in a reversal of thermodynamic stabilities in the earlier study.

II. METHODOLOGY

System Setup: The initial coordinates for the major and minor forms of the RNA

duplex were taken from structures deposited in the PDB database (PDB ID: 2DD2 and

2DD3, respectively).59 Following Mathews and coworkers,60 we truncated the system by

removing the dangling ends consisting of unpaired uracil and purine. The RNA molecule

was modeled using a properly symmetrized version63 of the AMBER99bsc0 force field,64

employing the �OL3 torsional corrections.65 Solvent e↵ects were treated implicitly using a

generalized Born model,66,67 and an e↵ective monovalent salt concentration of 1.0M was

maintained using the Debye-Hückel approximation.68
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Molecular Dynamics Simulations: The GPU-enabled version of the AMBER12 code was

used to carry out implicit solvent molecular dynamics simulations of length 50 ns starting

from local potential energy minima corresponding to the major and minor forms. An infinite

cuto↵ was employed for the non-bonded interactions. The simulation temperature was

maintained at 300K using a Langevin thermostat.69

Discrete Path Sampling: DPS simulations were carried out to survey the underlying en-

ergy landscape, and characterize transition pathways for the adenine-adenine conformational

switch in full dimensionality.

The DPS procedure provides a systematic framework based on geometry optimization for

building a transition network, which encodes the global thermodynamics and kinetics.50,51,70

A sequence of minima connected by intervening transition states constitutes a discrete path.

A local minimum is defined as a stationary point (vanishing gradient) for which all the

nonzero normal mode frequencies are positive. Transition states are defined geometrically

as saddle points of index one,49 with a single imaginary normal mode frequency correspond-

ing to a local reaction coordinate. Steepest-descent paths from the transition state define the

connected local minima. Here, we employed a modified version of the L-BFGS algorithm71

for local minimizations to characterize approximate steepest-descent paths. The doubly-

nudged72 elastic band61,62 (DNEB) method was used to find candidate transition state struc-

tures between intervening minima. These transition state candidates were further optimized

using hybrid-eigenvector following.73,74 We note that it is important to establish the connec-

tivity of local minima by checking the steepest-descent pathways, since the original DNEB

interpolation often misses some of the intervening transition states and local minima, espe-

cially for lengthy gaps when a small number of images are used. It is also noteworthy that

the kinetic transition network usually requires substantial additional sampling to identify

kinetically relevant pathways once an initial connected path has been found.

A convergence criterion of 10�6 kcal/mol/Å for the root-mean-square gradient was em-

ployed for all the geometry optimizations. The OPTIM code75 interfaced with the AMBER9

package76 was used to carry out the local minimizations, the transition state searches, and

pathway analysis.

Representative structures corresponding to the major and minor conformations identified

from the MD simulations were used as the initial endpoints for the DPS calculations. After a
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fully connected initial discrete path was found between the two structures, further refinement

of the resulting kinetic transition network was carried out using several schemes available

within the PATHSAMPLE code.77 These schemes have been described in detail elsewhere,

and for brevity we will only outline the key features. To locate pathways with lower energy

barriers we used the SHORTCUT BARRIER scheme,78–80 which selects pairs of minima on

either side of, and an equal number of steps away from, the largest barriers for additional

connection attempts. The SHORTCUT scheme,78–80 which attempts to connect minima that

are close together in configuration space, but are separated by a minimum number of steps

on the discrete paths, was used to locate shorter paths between the endpoints. Finally,

the UNTRAP scheme,79 which selects minima for connection-making attempts based on

the ratio of the potential energy barrier to the potential energy di↵erence, was used to

remove artificial frustration from the transition network, which provides a more faithful

representation of the global dynamics. The three refinement schemes were used in sequence

until the rate constant for the transition between the major and minor forms was converged

to within an order of magnitude. Given the systematic sources of error in the empirical

potential, the sampling, the use of harmonic densities of states, and the assumption of

Markovian dynamics between appropriately regrouped states,81 we would not expect better

than order of magnitude agreement with experiment.

Estimating free energies and interconversion rates: The vibrational partition func-

tions associated with the minima and the transition states in the network were estimated

using a harmonic approximation.82,83

Zi(T ) =
nie�Vi/kT

(h⌫i/kT )
 . (1)

In equation (1), Vi denotes the potential energy of minimum i, ni is the number of distinct

permutational isomers of i, ⌫i denotes the geometric mean normal mode frequency associated

with minimum i, and  = 3N � 6 is the number of vibrational degrees of freedom, where N

is the number of atoms.

The full canonical partition function, Z(T ), can be written as a sum of all the contribu-

tions from the di↵erent catchment basins corresponding to each local minimum.

Z(T ) =
NX

i

Zi(T ). (2)
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The local free energy, Fi(T ), and the equilibrium occupation probability, peqi (T ), of each

minimum are:

Fi(T ) = kT lnZi(T ), (3)

and peqi (T ) =
Zi(T )

Z(T )
. (4)

The partition functions and the free energies for the transition states are defined in an

analogous way, except that the normal mode frequency corresponding to the unique negative

Hessian eigenvalue (imaginary normal mode frequency) is excluded.

The minimum-to-minimum rate constants are estimated using harmonic transition state

theory (TST).

k†
i (T ) =

kT

h

Z†(T )

Zi(T )
e���V . (5)

In equation (5), Z†(T ) denotes the partition function of the transition state; Zi(T ) is the

partition function of minimum i; �V is the potential energy di↵erence between the transition

state and minimum i. The total rate constant kji(T ) for an elementary transition from

minimum i to minimum j is obtained by summing the k†
i (T ) values for all transition states

that connect the two minima.

The minimum-to-minimum rate constants are used in calculating global dynamical prop-

erties. Within the steady-state approximation for intervening minima, the rate constants,

kSS
AB and kSS

BA between reactant (A) and product (B) states, can be expressed as weighted

sums over all discrete paths in the network, assuming that the dynamics between adjacent

minima or lumped states81 is Markovian:50

kSS
AB =

1

peqB

X

a b

kai1ki1i2ki2i3 ...kinbp
eq
bP

j1
kj1i1

P
j2
kj2i2

P
j3
kj3i3 ...

P
jn
kjnin

. (6)

In terms of transition probabilities, P�↵ between directly connected minima � and ↵, equa-

tion (6) can be rewritten as:50

kSS
AB =

1

peqB

X

a b

Pai1Pi1i2Pi2i3 ...Pinbp
eq
b ⌧�1b . (7)

The individual sums in the denominators of equation (6) consist of the unimolecular rate

constants for all direct transitions from minimum jk to ik. The discrete path that makes the

largest contribution to the steady-state rate constant is termed the ‘fastest path’, and can be

extracted from the network using Dijkstra’s shortest path algorithm with appropriate edge

weights78,84 � lnP↵�, providing access to the product of transition probabilities in equation
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(7). To characterize additional paths in order of their contribution to kSS we employ the

recursive enumeration algorithm85 within the same framework,86 and these pathways were

examined to deduce mechanistic details of the adenine conformational switch. The steady-

state approximation for the intervening minima can be relaxed to yield rate constants kAB

and kBA that correspond to the mean first passage times between reactants and products.87

To extract these values we employ a graph transformation technique (NGT)87,88 where min-

ima in the intervening region are progressively removed, and the transition probabilities as

well as the waiting times are renormalized to conserve the average mean first passage time

(MFPT).87,89

We compute the rate constants in conjunction with a recursive free energy regrouping

scheme,81 which lumps together structures separated by free energy barriers below a certain

threshold into a single macrostate. This approach is similar in spirit to the kinetic clustering

schemes employed in methods based upon explicit dynamics.26,33 In the regrouping, the

original reactant and product states are expanded into ensembles of conformations assumed

to be in local equilibrium, and hence the global dynamics can be directly compared to

the observation time scale of experiments.90 After regrouping, the equilibrium occupation

probability and the free energy associated with group J are

peqJ (T ) =
X

j2J

peqj (T ), (8)

FJ = �kT ln
X

j2J

Zj(T ). (9)

where minimum j is a member of group J . The free energy of the group of transition states

linking J and K is:81

F †
KJ = �kT ln

X

k j

Z†
kj(T ) ⌘ �kT lnZ†

KJ(T ), (10)

To analyze global dynamics corresponding to regrouped databases, the rate constants cor-

responding to transitions between di↵erent free energy groups are required, which can then

be used in the appropriate expressions for rate constants and committor probabilities.87 The

intergroup rate constant from J to K is:81

kKJ =
X

k j

peqj (T )

peqJ (T )
kkj(T ) =

X

k j

Zj(T )

ZJ(T )

kT

h

Z†
kj(T )

Zj(T )
,

=
kT

h

Z†
KJ(T )

ZJ(T )
=

kT

h
e�[F

†
KJ (T )�FJ (T )]/kT .

(11)
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Disconnectivity Graphs: The potential and free energy landscapes constructed using DPS

were visualized in the form of disconnectivity graphs.91–93 In these diagrams the landscape is

segregated into disjoint sets of minima known as superbasins, at regular intervals of energy.

Minima within each superbasin are mutually accessible via transition states lying below the

energy threshold, while transitions out of superbasins require higher energy barriers to be

surmounted. A key feature of disconnectivity graphs is that they should provide a faithful

representation of the underlying kinetics,94 avoiding low-dimensional projection, which may

lump together states separated by significant energy barriers.

III. RESULTS AND DISCUSSION

Although the time scale of the MD simulations is not long enough to explore complete

conformational switching between the major and minor forms, they provide some useful

insight into the local fluctuations around the NMR structures. As illustrated by the time

evolution of the RMSD (Figure 2), the minor conformation is quite flexible, whereas the

major conformation seems to exhibit some degree of conformational rigidity over short time

scales. The large jumps in the RMSD profile for both the major and the minor forms are

associated with the flipping of the A5 nucleobase out of the helix, which in turn leads to the

loss of the hydrogen-bonding interactions between the central adenine-adenine sheared base

pair.

In contrast to short time scale MD simulations, discrete path sampling provides a viable

route to global exploration of the underlying energy landscape, and facilitates the detailed

study of transition pathways of varying complexity. To identify suitable endpoints for DPS

simulations, snapshots along the MD trajectories were saved every 10 ps, and subsequently

locally minimized. The lowest potential energy minima corresponding to the minor and

major forms were selected as the representative reactant and product states, respectively.

After an initial discrete pathway was found between these endpoints, connection attempts

were made for the rest of the local minima (identified from the MD simulations) to either

the reactant or the product state in a pairwise fashion, based on the lowest distance in con-

figuration space after optimal alignment. The transition network was subsequently refined

employing the strategies described in the Methodology section.
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FIG. 2: Evolution of the RMSD for the major conformation (red) and the minor

conformation (blue) along the MD trajectories. The large jumps in the profiles correspond

to the flipping of the A5 nucleobase into an extrahelical position.

The free landscape for the RNA duplex, computed at 300K, is shown in the form of a

disconnectivity graph in Figure 3. To highlight the key regions of the landscape, we have

used a discrete coloring scheme. The red branches denote minima that exhibit an RMSD 

1 Å from the NMR structure corresponding to the major form. Similarly, the blue branches

denote minima that are structurally close to the NMR structure corresponding to the minor

form. All the other branches are colored black. The intermingling of colors in some regions

of the landscape emphasizes the limitations of structural order parameters, such as RMSD,

in distinguishing kinetically separate basins. We note that the use of structural metrics in

this study is only to aid visualization, and not to draw any kinetic insight.

As expected, the putative free energy global minimum corresponds to the major con-

formation. The lowest energy conformation lying at the bottom of the red funnel exhibits

all the key interactions found in the NMR structure: A14 is stacked between A6 and A15

along the minor groove, and the A5-A14 base pair exhibits trans-Hoogsteen/sugar-edge

hydrogen-bonding interactions. In contrast, A5 is stacked between A6 and A15 in the minor

conformation, which lies at the bottom of the blue funnel. The minor form is destabilized
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FIG. 3: Free energy landscape computed at 300K depicted in the form of a disconnectivity

graph. The red branches lead to minima that exhibit an RMSD  1 Å from the NMR

structure corresponding to the major conformation (PDB ID: 2DD2). Similarly, blue

branches lead to minima that exhibit an RMSD  1 Å from the NMR structure

corresponding to the minor conformation (PDB ID: 2DD3). All other branches are shown

in black. Some representative minima from the di↵erent structural ensembles are shown

superimposed on the graph.
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by about 1.8 kcal/mol with respect to the minor form. This estimate is in good agreement

with the upper bound of the experimental free energy di↵erence (around 1.3 kcal/mol), cal-

culated based on the population analysis of the major and the minor forms. However, our

results di↵er from the earlier study by Mathews and coworkers,59 who predicted that the

minor form is stabilized by around 7.04 kcal/mol. In that work the authors estimated the

free energy di↵erence based on a one-dimensional representation of the free energy surface

along a predefined reaction coordinate. It is possible that the low-dimensional projection

could have resulted in the opposite stability that was reported.

In addition to the major and the minor forms, we also identify another prominent funnel

on the landscape, which primarily consists of structures in which the A5 nucleobase is

flipped out of the RNA helix. In fact, these structures are quite similar to those that

were encountered during the initial MD simulations. The stacked conformation, which was

predicted by Mathews and coworkers to be a key intermediate along the conformational

switching pathway,60 lies at the bottom of a narrow subfunnel.

The overall topography of the landscape leads to multiple peaks in the heat capacity pro-

file (Figure 4). Such features are characteristics of multifunnel landscapes associated with

conformational switches,54,95,96 and were first observed for the solid-solid type transition

between competing morphologies observed in an atomic cluster.97,98 At low temperature,

where enthalpy dominates, the major conformation is thermodynamically favored, although

kinetic trapping in the competing basins is likely to impede relaxation. At intermediate

temperatures the competing e↵ects of enthalpy and entropy cause the free energy global

minimum to switch to the unstacked conformation. At high temperatures, the minor con-

formation dominates the equilibrium population. It is likely that the transition temperatures

associated with the switching between the di↵erent funnels may be overestimated here due

to the inherent limitations of the harmonic superposition approximation.70 Nonetheless, the

relative positions of the peaks in the heat capacity curve provide additional insight into the

contrasting flexibilities of the major and the minor forms observed during the MD simula-

tions. The major conformation, which is stabilized by enthalpy, undergoes only restricted

motions for much of the trajectory. On the other hand, the minor form is more flexible and

exhibits substantially larger fluctuations.

The large free energy barrier separating the major and the minor conformations suggests

that conformational switching between the two forms is a slow process. Using the NGT
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FIG. 4: The normalized heat capacity profile obtained from the database of minima using

the harmonic superposition approximation. Here, normalization is carried out with respect

to the number of atoms, N , and CV is in reduced units of k.

technique87,89 in conjunction with a regrouping threshold of 5.0 kcal/mol, we estimate a rate

constant of 165.9 s�1 for the transition from the minor to the major form, and 246.5 s�1

for the reverse process, in good agreement with experiment.59 A representative sequence of

configurations from the corresponding pathway ensemble is shown in Figure 5. The initial

phase of the transition is characterized by the disruption of the hydrogen-bonds between

the sheared adenine-adenine base pair. During this phase, A5 loses its stacking interactions

with both A6 and A15. Subsequently, the stacked intermediate structure is formed, where

A14 is stacked on top of A5. During the next phase, A14 continues to slide towards the

minor groove, until the hydrogen-bonding interaction between A5 and A14 is reestablished,

and the major conformation is formed.

In previous work an improper dihedral angle defined by the C4, C8 and N1 atoms of

A5 and C15 atom of A14 was employed as a surrogate for the multidimensional reaction

coordinate corresponding to the sliding mechanism.60 We find that the value of this dihedral

gradually changes from around 0� to �180� along the transition pathway, in a similar fashion

to the 50 facing mechanism.60 However, the dihedral profile features jumps and plateaux, in
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FIG. 5: Top panel: Total potential energy (V ) as a function of the integrated path length

(s) for the conformational switch from the minor to the major form. This pathway makes

the largest contribution to the phenomenological two-state rate constant, and hence is

assigned as the kinetically most relevant. Some representative structures encountered

along the pathway are illustrated. Bottom panel: The evolution of the improper dihedral

defined by the C4, C8 and N1 atoms of A5 and C15 of A4, along the pathway.
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contrast to the relatively smooth profile reported before. This discrepancy suggests that

there are additional degrees of freedom coupled to the dihedral degree of freedom, which

could have important implications in the analysis of thermodynamics and kinetics. Interest-

ingly, we do not find any evidence for a 30 facing mechanism among the kinetically relevant

set of pathways.

IV. CONCLUSION

In this study, we have provided atomistic insight into the transition mechanism between

two conformations of an adenine-adenine RNA conformational switch using discrete path

sampling. The interconversion kinetics are relatively slow, making this a challenging problem

for conventional simulation techniques. Conformational switching between the two forms

occurs via stacked intermediates, along a preferred sliding direction. Overall, the generic

features of the transition pathway are found to be consistent with a previous study by

Mathews and coworkers.59

In agreement with the experimental findings,59 we find that the major form is stabilized

by around 1.8 kcal/mol with respect to the minor form in terms of free energy. The interplay

between enthalpy and entropy leads to multiple features in the heat capacity profile. Such

signatures are likely to be characteristic of conformational switches, and suggest that a

subtle modulation of environmental conditions could result in population shifts to favor one

particular form. In the future, it would be interesting to see how the landscape evolves

as function of tunable parameters, which could provide further insight into the remarkable

functionality of more complex conformational switches.
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