34 research outputs found

    Non-Fermi-liquid behavior at anti-ferromagnetic quantum critical point in heavy fermion system Ce(Cu1x_{1-x}Cox_x)2_2Ge2_2

    Full text link
    Polycrystalline samples of Ce(Cu1x_{1-x}Cox_x)2_2Ge2_2 were investigated by means of electrical resistivity ρ\rho(TT), magnetic susceptibility χ\chi(TT), specific heat CCp_p(TT) and thermo electric power SS(TT) measurements. The long-range antiferromagnetic (AFM) order, which set in at TTN_N = 4.1 K in CeCu2_2Ge2_2, is suppressed by non-iso-electronic cobalt (Co) doping at a critical value of the concentration xxc_c = 0.6, accompanied by non-Fermi liquid (NFL) behavior inferred from the power law dependence of heat capacity and susceptibility i.e. CC(TT)/TT and χ\chi(TT) \propto TT1+λ^{-1+\lambda} down to 0.4 K, along with a clear deviation from TT2^2 behavior of the electrical resistivity. However, we have not seen any superconducting phase in the quantum critical regime down to 0.4 K.Comment: 8 pages, 11 figure

    Heavy fermion and Kondo lattice behavior in the itinerant ferromagnet CeCrGe3

    Full text link
    Physical properties of polycrystalline CeCrGe3_{3} and LaCrGe3_{3} have been investigated by x-ray absorption spectroscopy, magnetic susceptibility χ(T)\chi(T), isothermal magnetization M(H), electrical resistivity ρ(T)\rho(T), specific heat C(TT) and thermoelectric power S(TT) measurements. These compounds are found to crystallize in the hexagonal perovskite structure (space group \textit{P63_{3}/mmc}), as previously reported. The ρ(T)\rho(T), χ(T)\chi(T) and C(TT) data confirm the bulk ferromagnetic ordering of itinerant Cr moments in LaCrGe3_{3} and CeCrGe3_{3} with TCT_{C} = 90 K and 70 K respectively. In addition a weak anomaly is also observed near 3 K in the C(TT) data of CeCrGe3_{3}. The T dependences of ρ\rho and finite values of Sommerfeld coefficient γ\gamma obtained from the specific heat measurements confirm that both the compounds are of metallic character. Further, the TT dependence of ρ\rho of CeCrGe3_{3} reflects a Kondo lattice behavior. An enhanced γ\gamma of 130 mJ/mol\,K2^{2} together with the Kondo lattice behavior inferred from the ρ(T)\rho(T) establish CeCrGe3_{3} as a moderate heavy fermion compound with a quasi-particle mass renormalization factor of \sim 45.Comment: 7 pages, 7 figures. Accepted by Journal of Physics: Condensed Matte

    Valence fuctuation and magnetic ordering in EuNi2(P1-xGex)2 single crystals

    Full text link
    Unusual phases and phase transitions are seen at the magnetic-nonmagnetic boundary in Ce, Eu and Yb-based compounds. EuNi2_2P2_{2} is a very unusual valence fluctuating Eu system, because at low temperatures the Eu valence stays close to 2.5 instead of approaching an integer value. Eu valence and thus the magnetic property in this system can be tuned by Ge substitution in P site as EuNi2_2Ge2_{2} is known to exhibit antiferromagnetc (AFM) ordering of divalent Eu moments with TNT_N = 30 K. We have grown EuNi2_2(P1x_{1-x}Gex_x)2_2 (0.0 \leq xx \leq 0.5) single crystals and studied their magnetic, thermodynamic and transport properties. Increasing Ge doping to x>x > 0.4 results in a well-defined AFM ordered state with TNT_N = 12 K for xx = 0.5. Moreover, the reduced value of magnetic entropy for xx = 0.5 at TNT_N suggests the presence of valance fluctuation/ Kondo effect in this compound. Interestingly, the specific heat exhibits an enhanced Sommerfeld coefficient upon Ge doping. Subsequently, electronic structure calculations lead to a non-integral valence in EuNi2_2P2_{2} but a stable divalent Eu state in EuNi2_2Ge2_{2} which is in good agreement with experimental results.Comment: 7 pages, 8 figure

    Penetration depth and gap structure in the antiperovskite oxide superconductor Sr3x_{3-x}SnO revealed by μ\muSR

    Get PDF
    We report a μ\muSR study on the antiperovskite oxide superconductor Sr3x_{3-x}SnO. With transverse-field μ\muSR, we observed the increase of the muon relaxation rate upon cooling below the superconducting transition temperature Tc=5.4T_{\mathrm{c}}=5.4 K, evidencing bulk superconductivity. The exponential temperature dependence of the relaxation rate σ\sigma at low temperatures suggests a fully gapped superconducting state. We evaluated the zero-temperature penetration depth λ(0)1/σ(0)\lambda(0)\propto1/\sqrt{\sigma(0)} to be around 320-1020 nm. Such a large value is consistent with the picture of a doped Dirac semimetal. Moreover, we revealed that the ratio Tc/λ(0)2T_{\mathrm{c}}/\lambda(0)^{-2} is larger than those of ordinary superconductors and is comparable to those of unconventional superconductors. The relatively high TcT_{\mathrm{c}} for small carrier density may hint at an unconventional pairing mechanism beyond the ordinary phonon-mediated pairing. In addition, zero-field μ\muSR did not provide evidence of broken time-reversal symmetry in the superconducting state. These features are consistent with the theoretically proposed topological superconducting state in Sr3x_{3-x}SnO, as well as with ss-wave superconductivity.Comment: 9 pages, 9 figures, to be published in Physical Review
    corecore