34 research outputs found
Non-Fermi-liquid behavior at anti-ferromagnetic quantum critical point in heavy fermion system Ce(CuCo)Ge
Polycrystalline samples of Ce(CuCo)Ge were investigated
by means of electrical resistivity (), magnetic susceptibility
(), specific heat () and thermo electric power ()
measurements. The long-range antiferromagnetic (AFM) order, which set in at
= 4.1 K in CeCuGe, is suppressed by non-iso-electronic cobalt
(Co) doping at a critical value of the concentration = 0.6, accompanied
by non-Fermi liquid (NFL) behavior inferred from the power law dependence of
heat capacity and susceptibility i.e. ()/ and ()
down to 0.4 K, along with a clear deviation from
behavior of the electrical resistivity. However, we have not seen any
superconducting phase in the quantum critical regime down to 0.4 K.Comment: 8 pages, 11 figure
Heavy fermion and Kondo lattice behavior in the itinerant ferromagnet CeCrGe3
Physical properties of polycrystalline CeCrGe and LaCrGe have
been investigated by x-ray absorption spectroscopy, magnetic susceptibility
, isothermal magnetization M(H), electrical resistivity ,
specific heat C() and thermoelectric power S() measurements. These
compounds are found to crystallize in the hexagonal perovskite structure (space
group \textit{P6/mmc}), as previously reported. The ,
and C() data confirm the bulk ferromagnetic ordering of itinerant Cr moments
in LaCrGe and CeCrGe with = 90 K and 70 K respectively. In
addition a weak anomaly is also observed near 3 K in the C() data of
CeCrGe. The T dependences of and finite values of Sommerfeld
coefficient obtained from the specific heat measurements confirm that
both the compounds are of metallic character. Further, the dependence of
of CeCrGe reflects a Kondo lattice behavior. An enhanced
of 130 mJ/mol\,K together with the Kondo lattice behavior inferred from
the establish CeCrGe as a moderate heavy fermion compound with
a quasi-particle mass renormalization factor of 45.Comment: 7 pages, 7 figures. Accepted by Journal of Physics: Condensed Matte
Valence fuctuation and magnetic ordering in EuNi2(P1-xGex)2 single crystals
Unusual phases and phase transitions are seen at the magnetic-nonmagnetic
boundary in Ce, Eu and Yb-based compounds. EuNiP is a very unusual
valence fluctuating Eu system, because at low temperatures the Eu valence stays
close to 2.5 instead of approaching an integer value. Eu valence and thus the
magnetic property in this system can be tuned by Ge substitution in P site as
EuNiGe is known to exhibit antiferromagnetc (AFM) ordering of
divalent Eu moments with = 30 K. We have grown
EuNi(PGe) (0.0 0.5) single crystals and
studied their magnetic, thermodynamic and transport properties. Increasing Ge
doping to 0.4 results in a well-defined AFM ordered state with = 12
K for = 0.5. Moreover, the reduced value of magnetic entropy for = 0.5
at suggests the presence of valance fluctuation/ Kondo effect in this
compound. Interestingly, the specific heat exhibits an enhanced Sommerfeld
coefficient upon Ge doping. Subsequently, electronic structure calculations
lead to a non-integral valence in EuNiP but a stable divalent Eu
state in EuNiGe which is in good agreement with experimental results.Comment: 7 pages, 8 figure
Penetration depth and gap structure in the antiperovskite oxide superconductor SrSnO revealed by SR
We report a SR study on the antiperovskite oxide superconductor
SrSnO. With transverse-field SR, we observed the increase of the
muon relaxation rate upon cooling below the superconducting transition
temperature K, evidencing bulk superconductivity. The
exponential temperature dependence of the relaxation rate at low
temperatures suggests a fully gapped superconducting state. We evaluated the
zero-temperature penetration depth to be
around 320-1020 nm. Such a large value is consistent with the picture of a
doped Dirac semimetal. Moreover, we revealed that the ratio
is larger than those of ordinary
superconductors and is comparable to those of unconventional superconductors.
The relatively high for small carrier density may hint at an
unconventional pairing mechanism beyond the ordinary phonon-mediated pairing.
In addition, zero-field SR did not provide evidence of broken
time-reversal symmetry in the superconducting state. These features are
consistent with the theoretically proposed topological superconducting state in
SrSnO, as well as with -wave superconductivity.Comment: 9 pages, 9 figures, to be published in Physical Review