4 research outputs found

    Support vector machine based fault classification and location of a long transmission line

    Get PDF
    This paper investigates support vector machine based fault type and distance estimation scheme in a long transmission line. The planned technique uses post fault single cycle current waveform and pre-processing of the samples is done by wavelet packet transform. Energy and entropy are obtained from the decomposed coefficients and feature matrix is prepared. Then the redundant features from the matrix are taken out by the forward feature selection method and normalized. Test and train data are developed by taking into consideration variables of a simulation situation like fault type, resistance path, inception angle, and distance. In this paper 10 different types of short circuit fault are analyzed. The test data are examined by support vector machine whose parameters are optimized by particle swarm optimization method. The anticipated method is checked on a 400 kV, 300 km long transmission line with voltage source at both the ends. Two cases were examined with the proposed method. The first one is fault very near to both the source end (front and rear) and the second one is support vector machine with and without optimized parameter. Simulation result indicates that the anticipated method for fault classification gives high accuracy (99.21%) and least fault distance estimation error (0.29%

    Power quality enhancement of grid-connected PV system

    No full text
    Solar photovoltaic (PV) power, for its multiple benefits, has adhered to prominent consideration in the electrical energy generation region. The double-stage triple-phase grid-connected solar PV (SPV) system is utilized to enhance the power quality by employing a lymphoblastoid cell lines LCL filter. In this method, a DC-DC converter and DC-AC converter make a feasible juncture of the PV systems to the electrical interface. For converting boosted DC into AC, A 3-phase DC-AC converter is used, which is supplied into the grid. A 3-phase voltage converter is employed in place of an inverter for interfacing amid the voltage generated by the PV system and the grid possessing an AC transmission line. An maximum power point tracking (MPPT) application is used in this proposal to amplify the effectiveness of the PV array in face of any unsteady climatic circumstances. Hence, the highest energy could be secured out of the solar PV array and interfaced with the grid. Enhancing power quality by employing an LCL filter is quantified by FFT analysis in MATLAB. The advised proposal has attained a very low total harmonic distortion (THD), proving its efficacy. Also, the outcomes ascertain the applications of the proposed system and extend future advances of renewable energy with a great power quality improvement

    Fault detection, location and classification of a transmission line

    No full text
    corecore