5,945 research outputs found
Resonant enhancement of ultracold photoassociation rate by electric field induced anisotropic interaction
We study the effects of a static electric field on the photoassociation of a
heteronuclear atom-pair into a polar molecule. The interaction of permanent
dipole moment with a static electric field largely affects the ground state
continuum wave function of the atom-pair at short separations where
photoassociation transitions occur according to Franck-Condon principle.
Electric field induced anisotropic interaction between two heteronuclear ground
state atoms leads to scattering resonances at some specific electric fields.
Near such resonances the amplitude of scattering wave function at short
separation increases by several orders of magnitude. As a result,
photoaasociation rate is enhanced by several orders of magnitude near the
resonances. We discuss in detail electric field modified atom-atom scattering
properties and resonances. We calculate photoassociation rate that shows giant
enhancement due to electric field tunable anisotropic resonances. We present
selected results among which particularly important are the excitations of
higher rotational levels in ultracold photoassociation due to electric field
tunable resonances.Comment: 14 pages,9 figure
Anharmonic quantum contribution to vibrational dephasing
Based on a quantum Langevin equation and its corresponding Hamiltonian within
a c-number formalism we calculate the vibrational dephasing rate of a cubic
oscillator. It is shown that leading order quantum correction due to
anharmonicity of the potential makes a significant contribution to the rate and
the frequency shift. We compare our theoretical estimates with those obtained
from experiments for small diatomics , and .Comment: 21 pages, 1 figure and 1 tabl
Modelling of laboratory data of bi-directional reflectance of regolith surface containing Alumina
Bidirectional reflectance of a surface is defined as the ratio of the
scattered radiation at the detector to the incident irradiance as a function of
geometry. The accurate knowledge of the bidirectional reflection function (BRF)
of layers composed of discrete, randomly positioned scattering particles is
very essential for many remote sensing, engineering, biophysical applications
and in different areas of Astrophysics. The computations of BRF's for plane
parallel particulate layers are usually reduced to solve the radiative transfer
equation (RTE) by the existing techniques. In this work we present our
laboratory data on bidirectional reflectance versus phase angle for two sample
sizes of 0.3 and 1 of Alumina for the He-Ne laser at 632.8 nm (red) and
543.5nm(green) wavelength. The nature of the phase curves of the asteroids
depends on the parameters like- particle size, composition, porosity, roughness
etc. In our present work we analyse the data which are being generated using
single scattering phase function i.e. Mie theory considering particles to be
compact sphere. The well known Hapke formula will be considered along with
different particle phase function such as Mie and Henyey Greenstein etc to
model the laboratory data obtained at the asteroid laboratory of Assam
University.Comment: 5 pages, 5 figures [accepted for publication in Publications of the
Astronomical Society of Australia (PASA) on 8 June, 2011
Signature of strong atom-cavity interaction on critical coupling
We study a critically coupled cavity doped with resonant atoms with
metamaterial slabs as mirrors. We show how resonant atom-cavity interaction can
lead to a splitting of the critical coupling dip. The results are explained in
terms of the frequency and lifetime splitting of the coupled system.Comment: 8 pages, 5 figure
Low-Mass Dileptons at the CERN-SpS: Evidence for Chiral Restoration?
Using a rather complete description of the in-medium spectral function
- being constrained by various independent experimental information - we
calculate pertinent dilepton production rates from hot and dense hadronic
matter. The strong broadening of the resonance entails a reminiscence to
perturbative annihilation rates in the vicinity of the phase
boundary. The application to dilepton observables in Pb(158AGeV)+Au collisions
- incorporating recent information on the hadro-chemical composition at
CERN-SpS energies - essentially supports the broadening scenario. Possible
implications for the nature of chiral symmetry restoration are outlined.Comment: 6 pages ReVTeX including 5 eps-figure
- …