11 research outputs found
Highly chlorinated dimethanofluorenes in technical chlordane and in human adipose tissue
AbstractSeveral new components of technical chlordane were discovered using electron capture, negative ionization gas chromatographic mass spectrometry. These compounds have 10â12 chlorines and are produced by the condensation of three cyclopentadiene molecules. The most abundant compound has a molecular weight of 606 and has the elemental composition C15H6Cl12. This compound and a series of related compounds were also identified as contaminants in human adipose tissue samples. These compounds are approximately 0.01â0.03% of the technical chlordane mixture, and they have average concentrations in human adipose tissue of 0.4â0.7 ng per gram of fat. They are more highly retained in human adipose tissue than chlordane-like compounds containing eight or fewer chlorine atoms
Nitric oxide-assisted atmospheric pressure corona discharge ionization for the analysis of automobile hydrocarbon emission species
AbstractNitric oxide reagent gas has been found to improve the sensitivty and robustness of the atmospheric pressure corona discharge ionization (APCDI) process. Sensitivity has been increased by a factor of 20-100, depending on the compound, over APCDI without nitric oxide. The robustness (defined as the sensitivity to matrix interferences) of APCDI in the presence of water has been improved by a factor of 3 over normal APCDI. These improvements are due in part to a modification of the commercial inlet system and ionization chamber that allows the chamber and sample gases to be heated to 100 and 350 °C, respectively. Nitric oxide was chosen as the reagent gas because of the variety and selectivity of its interaction with hydrocarbons with differing functional groups. Product ions of nitric oxide ionization and their subsequent tandem mass spectra are presented and discussed for selected alkanes, alkenes, alkylbenzenes, alcohols, aldehydes, and an ether. A tandem mass spectrometry (unique parent ion-daughter ion transition) method was developed to quantify componds of specific interest in vehicle emissions. The absolute sensitivty for these compounds, under ideal conditions, was determined and ranges from 0.006 ppb for xylene (most sensitive) to 80 ppb for C8 (or larger) normal alkanes. Routine sensitivity for real-world samples was in the single parts per billion range for aromatic and olefinic species. Potential applications include the real-time, on-line monitoring of selected hydrocarbons in automobile exhaust
The landscape of somatic copy-number alteration across human cancers
available in PMC 2010 August 18.A powerful way to discover key genes with causal roles in oncogenesis is to identify genomic regions that undergo frequent alteration in human cancers. Here we present high-resolution analyses of somatic copy-number alterations (SCNAs) from 3,131 cancer specimens, belonging largely to 26 histological types. We identify 158 regions of focal SCNA that are altered at significant frequency across several cancer types, of which 122 cannot be explained by the presence of a known cancer target gene located within these regions. Several gene families are enriched among these regions of focal SCNA, including the BCL2 family of apoptosis regulators and the NF-ÎșÎ pathway. We show that cancer cells containing amplifications surrounding the MCL1 and BCL2L1 anti-apoptotic genes depend on the expression of these genes for survival. Finally, we demonstrate that a large majority of SCNAs identified in individual cancer types are present in several cancer types.National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, P50CA90578)National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, R01CA109038))National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, R01CA109467)National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, P01CA085859)National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, P01CA 098101)National Institutes of Health (U.S.) (Dana-Farber/Harvard Cancer Center and Pacific Northwest Prostate Cancer SPOREs, K08CA122833
Circulating insulin-like growth factor-I, insulin-like growth factor binding protein-3 and terminal duct lobular unit involution of the breast:a cross-sectional study of women with benign breast disease
BACKGROUND: Terminal duct lobular units (TDLUs) are the primary structures from which breast cancers and their precursors arise. Decreased age-related TDLU involution and elevated mammographic density are both correlated and independently associated with increased breast cancer risk, suggesting that these characteristics of breast parenchyma might be linked to a common factor. Given data suggesting that increased circulating levels of insulin-like growth factors (IGFs) factors are related to reduced TDLU involution and increased mammographic density, we assessed these relationships using validated quantitative methods in a cross-sectional study of women with benign breast disease. METHODS: Serum IGF-I, IGFBP-3 and IGF-I:IGFBP-3 molar ratios were measured in 228 women, ages 40-64, who underwent diagnostic breast biopsies yielding benign diagnoses at University of Vermont affiliated centers. Biopsies were assessed for three separate measures inversely related to TDLU involution: numbers of TDLUs per unit of tissue area (âTDLU countâ), median TDLU diameter (âTDLU spanâ), and number of acini per TDLU (âacini countâ). Regression models, stratified by menopausal status and adjusted for potential confounders, were used to assess the associations of TDLU count, median TDLU span and median acini count per TDLU with tertiles of circulating IGFs. Given that mammographic density is associated with both IGF levels and breast cancer risk, we also stratified these associations by mammographic density. RESULTS: Higher IGF-I levels among postmenopausal women and an elevated IGF-I:IGFBP-3 ratio among all women were associated with higher TDLU counts, a marker of decreased lobular involution (P-trendâ=â0.009 and <0.0001, respectively); these associations were strongest among women with elevated mammographic density (P-interaction <0.01). Circulating IGF levels were not significantly associated with TDLU span or acini count per TDLU. CONCLUSIONS: These results suggest that elevated IGF levels may define a sub-group of women with high mammographic density and limited TDLU involution, two markers that have been related to increased breast cancer risk. If confirmed in prospective studies with cancer endpoints, these data may suggest that evaluation of IGF signaling and its downstream effects may have value for risk prediction and suggest strategies for breast cancer chemoprevention through inhibition of the IGF system. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s13058-016-0678-4) contains supplementary material, which is available to authorized users
Mechanical loading of bone-anchored implants during functional performance tests in service members with transfemoral limb loss
IntroductionFor individuals with limb loss, bone-anchored implants create a direct structural and functional connection to a terminal prosthesis. Here, we characterized the mechanical loads distal to the abutment during several functional performance tests in Service members with transfemoral (TF) limb loss, to expand on prior work evaluating more steady-state ambulation on level ground or slopes/stairs.MethodsTwo males with unilateral TF limb loss and two males with bilateral TF limb loss participated after two-stage osseointegration (24 and 12 months, respectively). Tri-directional forces and moments were wirelessly recorded through a sensor, fit distal to the abutment, during six functional tests: Timed Up and Go (TUG), Four Square Step Test (FSST), Six Minute Walk Test (6MWT), Edgren Side-Step Test (SST), T-Test (TTEST), and Illinois Agility Test (IAT). Additionally, participants performed a straight-line gait evaluation on a 15â
m level walkway at a self-selected speed (0.93â1.24â
m/s). Peak values for each component of force and moment were extracted from all six functional tests; percent differences compared each peak with respect to the corresponding mean peak in straight-line walking.ResultsPeak mechanical loads were largest during non-steady state components of the functional tests (e.g., side-stepping during SST or TTEST, standing up from the ground during IAT). Relative to walking, peak forces during functional tests were larger by up to 143% (anterior-posterior), 181% (medial-lateral), and 110% (axial); peak moments were larger by up to 108% (flexion-extension), 50% (ab/adduction), and 211% (internal/external rotation).ConclusionsA more comprehensive understanding of the mechanical loads applied to bone-anchored implants during a variety of activities is critical to maximize implant survivability and long-term outcomes, particularly for Service members who are generally young at time of injury and return to active lifestyles