70 research outputs found

    Effects of extracellular Ca++, K+, and Na+ on cone and retinal pigment epithelium retinomotor movements in isolated teleost retinas.

    Get PDF
    We have examined the effects of changes in extracellular ionic composition on cone and retinal pigment epithelium (RPE) retinomotor movements in cultured isolated teleost retinas. In vivo, the myoid portion of teleost cones contracts in the light and elongates in the dark; RPE pigment disperses in the light and aggregates in the dark. In vitro, cones of dark-adapted (DA) retinas cultured in constant darkness contracted spontaneously to their light-adapted (LA) positions if the culture medium contained greater than or equal to 10(-3)M Cao++. DA cones retained their long DA positions in a medium containing less than or equal to 10(-6)M Cao++. Low [Ca++]o (10(-5)-10(-7)M) also permitted darkness to induce cone elongation and RPE pigment aggregation. Light produced cone contraction even in the absence of Cao++, but the extent of contraction was reduced if [Ca++]o was less than 10(-3) M. Thus, full contraction appeared to require the presence of external Ca++. High [K+]o (greater than or equal to 27 mM) inhibited both light-induced and light-independent Ca++-induced cone contraction. However, low [Na+]o (3.5 mM) in the presence of less than or equal to 10(-6)M Cao++ did not mimic light onset by inducing cone contraction in the dark. High [K+]o also promoted dark-adaptive cone and RPE movements in LA retinas cultured in the light. All results obtained in high [K+]o were similar to those observed when DA or LA retinas were exposed to treatments that elevate cytoplasmic cyclic 3,5-adenosine monophosphate (cAMP) content

    Neuroanatomical Study of the A11 Diencephalospinal Pathway in the Non-Human Primate

    Get PDF
    BACKGROUND: The A11 diencephalospinal pathway is crucial for sensorimotor integration and pain control at the spinal cord level. When disrupted, it is thought to be involved in numerous painful conditions such as restless legs syndrome and migraine. Its anatomical organization, however, remains largely unknown in the non-human primate (NHP). We therefore characterized the anatomy of this pathway in the NHP. METHODS AND FINDINGS: In situ hybridization of spinal dopamine receptors showed that D1 receptor mRNA is absent while D2 and D5 receptor mRNAs are mainly expressed in the dorsal horn and D3 receptor mRNA in both the dorsal and ventral horns. Unilateral injections of the retrograde tracer Fluoro-Gold (FG) into the cervical spinal enlargement labeled A11 hypothalamic neurons quasi-exclusively among dopamine areas. Detailed immunohistochemical analysis suggested that these FG-labeled A11 neurons are tyrosine hydroxylase-positive but dopa-decarboxylase and dopamine transporter-negative, suggestive of a L-DOPAergic nucleus. Stereological cell count of A11 neurons revealed that this group is composed by 4002±501 neurons per side. A 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP) intoxication with subsequent development of a parkinsonian syndrome produced a 50% neuronal cell loss in the A11 group. CONCLUSION: The diencephalic A11 area could be the major source of L-DOPA in the NHP spinal cord, where it may play a role in the modulation of sensorimotor integration through D2 and D3 receptors either directly or indirectly via dopamine formation in spinal dopa-decarboxylase-positives cells

    A barrier to lateral diffusion of porphyropsin in Necturus rod outer segment disks.

    Get PDF
    Microspectrophotometry was used to study lateral diffusion of the visual pigment, porphyropsin , in the disk membrane in intact mudpuppy (Necturus maculosus) rod outer segments (ROS), isolated in frog Ringer's solution. A concentration gradient of unbleached visual pigment was produced on the disks by rapidly photobleaching 40% of the pigment in an area spanning 1/4 or 1/2 of the cell's width. The change in optical density of the cells at 580 nm was then followed with time on either the bleached or unbleached side. The temperature dependence of porphyropsin diffusion yielded a Q10 of 2.5 between 10 and 20 degrees C with an activation energy of 12 +/- 2 kcal. At completion of pigment diffusion, the center and edge of the disk had, respectively, attained only 90 and 55% of the concentration expected. Computed diffusion coefficients (5.4 X 10(-9) cm2/s) were similar at the center and periphery of the disk immediately after the flash, however, an additional slow component for diffusion was detected at the periphery. A comparison of optical density at 525 nm along the diameter of ROS before and after the flash showed a persistent (20 min) postbleach concentration gradient of unbleached porphyropsin . This suggests that 15% of the prophyropsins may be sequestered into distinct areas on a mudpuppy disk and are not free to diffuse over the whole surface. This argument is supported by the observation that mudpuppy disks are separated into petal -shaped regions by incisures, some of which penetrate nearly to the disk center
    • …
    corecore