27 research outputs found
Results from Six Years of Community-Based Volunteer Water Quality Monitoring By the Upper Oconee Watershed Network
Proceedings of the 2007 Georgia Water Resources Conference, March 27-29, 2007, Athens, Georgia.The Upper Oconee Watershed Network (UOWN), an Athens, GA-based non-profit volunteer organization, was organized in 2000 with the mission to improve water quality in the Upper Oconee River basin through community-based advocacy, monitoring, and education. Quarterly monitoring of both reference and impaired stream segments form the basis for achieving all three of UOWN’s mission objectives. UOWN has developed a model for engaging the public in quarterly monitoring and in the larger annual River Rendezvous events. Quarterly monitoring not only tracks long-term trends in targeted stream segments, but also has resulted in the discovery and remediation of acute incidences of pollution. Six years of data collection revealed high levels of contamination in urban streams as evidenced by high conductivity and bacterial numbers, and potential limitations when using quarterly water quality monitoring to assess the health of Piedmont streams.Sponsored and Organized by: U.S. Geological Survey, Georgia Department of Natural Resources, Natural Resources Conservation Service, The University of Georgia, Georgia State University, Georgia Institute of TechnologyThis book was published by the Institute of Ecology, The University of Georgia, Athens, Georgia 30602-2202. The views and statements advanced in this publication are solely those of the authors and do not represent official views or policies of The University of Georgia, the U.S. Geological Survey, the Georgia Water Research Institute as authorized by the Water Resources Research Act of 1990 (P.L. 101-397) or the other conference sponsors
Broad-Spectrum Matrix Metalloproteinase Inhibition Curbs Inflammation and Liver Injury but Aggravates Experimental Liver Fibrosis in Mice
Background Liver fibrosis is characterized by excessive synthesis of extracellular matrix proteins, which prevails over their enzymatic degradation, primarily by matrix metalloproteinases (MMPs). The effect of pharmacological MMP inhibition on fibrogenesis, however, is largely unexplored. Inflammation is considered a prerequisite and important co-contributor to fibrosis and is, in part, mediated by tumor necrosis factor (TNF)-α-converting enzyme (TACE). We hypothesized that treatment with a broad-spectrum MMP and TACE-inhibitor (Marimastat) would ameliorate injury and inflammation, leading to decreased fibrogenesis during repeated hepatotoxin-induced liver injury.Methodology/Principal Findings Liver fibrosis was induced in mice by repeated carbon tetrachloride (CCl4) administration, during which the mice received either Marimastat or vehicle twice daily. A single dose of CCl4was administered to investigate acute liver injury in mice pretreated with Marimastat, mice deficient in Mmp9, or mice deficient in both TNF-α receptors. Liver injury was quantified by alanine aminotransferase (ALT) levels and confirmed by histology. Hepatic collagen was determined as hydroxyproline, and expression of fibrogenesis and fibrolysis-related transcripts was determined by quantitative reverse-transcription polymerase chain reaction. Marimastat-treated animals demonstrated significantly attenuated liver injury and inflammation but a 25% increase in collagen deposition. Transcripts related to fibrogenesis were significantly less upregulated compared to vehicle-treated animals, while MMP expression and activity analysis revealed efficient pharmacologic MMP-inhibition and decreased fibrolysis following Marimastat treatment. Marimastat pre-treatment significantly attenuated liver injury following acute CCl4-administration, whereas Mmp9 deficient animals demonstrated no protection. Mice deficient in both TNF-α receptors exhibited an 80% reduction of serum ALT, confirming the hepatoprotective effects of Marimastat via the TNF-signaling pathway.Conclusions/Significance Inhibition of MMP and TACE activity with Marimastat during chronic CCl4administration counterbalanced any beneficial anti-inflammatory effect, resulting in a positive balance of collagen deposition. Since effective inhibition of MMPs accelerates fibrosis progression, MMP inhibitors should be used with caution in patients with chronic liver diseases
Robust and persistent reactivation of SIV and HIV by N-803 and depletion of CD8+ cells
Human immunodeficiency virus (HIV) persists indefinitely in individuals with HIV who receive antiretroviral therapy (ART) owing to a reservoir of latently infected cells that contain replication-competent virus1–4. Here, to better understand the mechanisms responsible for latency persistence and reversal, we used the interleukin-15 superagonist N-803 in conjunction with the depletion of CD8+ lymphocytes in ART-treated macaques infected with simian immunodeficiency virus (SIV). Although N-803 alone did not reactivate virus production, its administration after the depletion of CD8+ lymphocytes in conjunction with ART treatment induced robust and persistent reactivation of the virus in vivo. We found viraemia of more than 60 copies per ml in all macaques (n = 14; 100%) and in 41 out of a total of 56 samples (73.2%) that were collected each week after N-803 administration. Notably, concordant results were obtained in ART-treated HIV-infected humanized mice. In addition, we observed that co-culture with CD8+ T cells blocked the in vitro latency-reversing effect of N-803 on primary human CD4+ T cells that were latently infected with HIV. These results advance our understanding of the mechanisms responsible for latency reversal and lentivirus reactivation during ART-suppressed infection
Recommended from our members
Dicloxacillin induces CYP2C19, CYP2C9 and CYP3A4 in vivo and in vitro
AimThe aim of this study was to study potential cytochrome P450 (CYP) induction by dicloxacillin.MethodsWe performed an open-label, randomized, two-phase, five-drug clinical pharmacokinetic cocktail crossover study in 12 healthy men with and without pretreatment with 1Â g dicloxacillin three times daily for 10Â days. Plasma and urine were collected over 24Â h and the concentration of all five drugs and their primary metabolites was determined using a liquid chromatography coupled to triple quadrupole mass spectrometry method. Cryopreserved primary human hepatocytes were exposed to dicloxacillin for 48Â h and changes in gene expression and the activity of CYP3A4, CYP2C9, CYP2B6 and CYP1A2 were investigated. The activation of nuclear receptors by dicloxacillin was assessed using luciferase assays.ResultsA total of 10Â days of treatment with dicloxacillin resulted in a clinically and statistically significant reduction in the area under the plasma concentration-time curve from 0 to 24Â h for omeprazole (CYP2C19) {geometric mean ratio [GMR] [95% confidence interval (CI)]: 0.33 [0.24, 0.45]}, tolbutamide (CYP2C9) [GMR (95% CI): 0.73 (0.65, 0.81)] and midazolam (CYP3A4) [GMR (95% CI): 0.54 (0.41, 0.72)]. Additionally, other relevant pharmacokinetic parameters were affected, indicating the induction of CYP2C- and CYP3A4-mediated metabolism by dicloxacillin. Investigations in primary hepatocytes showed a statistically significant dose-dependent increase in CYP expression and activity by dicloxacillin, caused by activation of the pregnane X receptor.ConclusionsDicloxacillin is an inducer of CYP2C- and CYP3A-mediated drug metabolism, and we recommend caution when prescribing dicloxacillin to users of drugs with a narrow therapeutic window
Recommended from our members
Dicloxacillin induces CYP2C19, CYP2C9 and CYP3A4 in vivo and in vitro.
AimThe aim of this study was to study potential cytochrome P450 (CYP) induction by dicloxacillin.MethodsWe performed an open-label, randomized, two-phase, five-drug clinical pharmacokinetic cocktail crossover study in 12 healthy men with and without pretreatment with 1Â g dicloxacillin three times daily for 10Â days. Plasma and urine were collected over 24Â h and the concentration of all five drugs and their primary metabolites was determined using a liquid chromatography coupled to triple quadrupole mass spectrometry method. Cryopreserved primary human hepatocytes were exposed to dicloxacillin for 48Â h and changes in gene expression and the activity of CYP3A4, CYP2C9, CYP2B6 and CYP1A2 were investigated. The activation of nuclear receptors by dicloxacillin was assessed using luciferase assays.ResultsA total of 10Â days of treatment with dicloxacillin resulted in a clinically and statistically significant reduction in the area under the plasma concentration-time curve from 0 to 24Â h for omeprazole (CYP2C19) {geometric mean ratio [GMR] [95% confidence interval (CI)]: 0.33 [0.24, 0.45]}, tolbutamide (CYP2C9) [GMR (95% CI): 0.73 (0.65, 0.81)] and midazolam (CYP3A4) [GMR (95% CI): 0.54 (0.41, 0.72)]. Additionally, other relevant pharmacokinetic parameters were affected, indicating the induction of CYP2C- and CYP3A4-mediated metabolism by dicloxacillin. Investigations in primary hepatocytes showed a statistically significant dose-dependent increase in CYP expression and activity by dicloxacillin, caused by activation of the pregnane X receptor.ConclusionsDicloxacillin is an inducer of CYP2C- and CYP3A-mediated drug metabolism, and we recommend caution when prescribing dicloxacillin to users of drugs with a narrow therapeutic window
Synthesizing pseudo-T2w images to recapture missing data in neonatal neuroimaging with applications in rs-fMRI
T1- and T2-weighted (T1w and T2w) images are essential for tissue classification and anatomical localization in Magnetic Resonance Imaging (MRI) analyses. However, these anatomical data can be challenging to acquire in non-sedated neonatal cohorts, which are prone to high amplitude movement and display lower tissue contrast than adults. As a result, one of these modalities may be missing or of such poor quality that they cannot be used for accurate image processing, resulting in subject loss. While recent literature attempts to overcome these issues in adult populations using synthetic imaging approaches, evaluation of the efficacy of these methods in pediatric populations and the impact of these techniques in conventional MR analyses has not been performed. In this work, we present two novel methods to generate pseudo-T2w images: the first is based in deep learning and expands upon previous models to 3D imaging without the requirement of paired data, the second is based in nonlinear multi-atlas registration providing a computationally lightweight alternative. We demonstrate the anatomical accuracy of pseudo-T2w images and their efficacy in existing MR processing pipelines in two independent neonatal cohorts. Critically, we show that implementing these pseudo-T2w methods in resting-state functional MRI analyses produces virtually identical functional connectivity results when compared to those resulting from T2w images, confirming their utility in infant MRI studies for salvaging otherwise lost subject data