2 research outputs found

    Metal–Organic Frameworks Stabilize Mono(phosphine)–Metal Complexes for Broad-Scope Catalytic Reactions

    No full text
    Mono­(phosphine)–M (M–PR<sub>3</sub>; M = Rh and Ir) complexes selectively prepared by postsynthetic metalation of a porous triarylphosphine-based metal–organic framework (MOF) exhibited excellent activity in the hydrosilylation of ketones and alkenes, the hydrogenation of alkenes, and the C–H borylation of arenes. The recyclable and reusable MOF catalysts significantly outperformed their homogeneous counterparts, presumably via stabilizing M–PR<sub>3</sub> intermediates by preventing deleterious disproportionation reactions/ligand exchanges in the catalytic cycles

    Cerium-Hydride Secondary Building Units in a Porous Metal–Organic Framework for Catalytic Hydroboration and Hydrophosphination

    No full text
    We report the stepwise, quantitative transformation of Ce<sup>IV</sup><sub>6</sub>(μ<sub>3</sub>-O)<sub>4</sub>(μ<sub>3</sub>-OH)<sub>4</sub>­(OH)<sub>6</sub>(OH<sub>2</sub>)<sub>6</sub> nodes in a new Ce-BTC (BTC = trimesic acid) metal–organic framework (MOF) into the first Ce<sup>III</sup><sub>6</sub>(μ<sub>3</sub>-O)<sub>4</sub>(μ<sub>3</sub>-OLi)<sub>4</sub>(H)<sub>6</sub>(THF)<sub>6</sub>Li<sub>6</sub> metal-hydride nodes that effectively catalyze hydroboration and hydrophosphination reactions. CeH-BTC displays low steric hindrance and electron density compared to homogeneous organolanthanide catalysts, which likely accounts for the unique 1,4-regioselectivity for the hydroboration of pyridine derivatives. MOF nodes can thus be directly transformed into novel single-site solid catalysts without homogeneous counterparts for sustainable chemical synthesis
    corecore