15,806 research outputs found

    Sleeved damper limits spring surging

    Get PDF
    Damping device limits spring surging in delicate instrumentation subjected to shock loading to tolerable limits. The device consists of a spiral formed plastic member interleaved between the spring coils in the same helix configuration

    Design, development, and fabrication of a prototype ice pack heat sink subsystem. Flight experiment physical phenomena experiment chest

    Get PDF
    The concept of a flight experiment physical phenomena experiment chest, to be used eventually for investigating and demonstrating ice pack heat sink subsystem physical phenomena during a zero gravity flight experiment, is described

    Plastic pre-compression and creep damage effects on the fracture toughness behaviour of Type 316H stainless steel

    Get PDF
    The influence of inelastic damage in the form of plastic pre-strain and creep damage, on fracture toughness of Type 316H stainless steel has been examined. Creep damage has been introduced into the 8% pre-compressed material by interrupting creep crack growth tests. Comparisons have been made between the fracture toughness test results from the as-received, pre-compressed and creep damaged materials. Furthermore, the effects of creep crack discontinuities on the crack tip strain fields have been examined by digital image correlation measurements. Inelastic damage was found to reduce the fracture toughness of the material, with creep damage having more severe effects than pre-strain

    Perturbation theory for the effective diffusion constant in a medium of random scatterer

    Full text link
    We develop perturbation theory and physically motivated resummations of the perturbation theory for the problem of a tracer particle diffusing in a random media. The random media contains point scatterers of density ρ\rho uniformly distributed through out the material. The tracer is a Langevin particle subjected to the quenched random force generated by the scatterers. Via our perturbative analysis we determine when the random potential can be approximated by a Gaussian random potential. We also develop a self-similar renormalisation group approach based on thinning out the scatterers, this scheme is similar to that used with success for diffusion in Gaussian random potentials and agrees with known exact results. To assess the accuracy of this approximation scheme its predictions are confronted with results obtained by numerical simulation.Comment: 22 pages, 6 figures, IOP (J. Phys. A. style

    The Cretaceous-Tertiary boundary marine extinction and global primary productivity collapse

    Get PDF
    The extinction of marine phyto-and zoo-plankton across the K-T boundary has been well documented. Such an event may have resulted in decreased photosynthetic fixation of carbon in surface waters and a collapse of the food chain in the marine biosphere. Because the vertical and horizontal distribution of the carbon isotopic composition of total dissolved carton (TDC) in the modern ocean is controlled by the transfer of organic carbon from the surface to deep reservoirs, it follows that a major disruption of the marine biosphere would have had a major effect on the distribution of carbon isotopes in the ocean. Negative carbon isotope excursions have been identified at many marine K-T boundary sequences worldwide and are interpreted as a signal of decreased oceanic primary productivity. However, the magnitude, duration and consequences of this productivity crisis have been poorly constrained. On the basis of planktonic and benthic calcareous microfossil carbon isotope and other geochemical data from DSDP Site 577 located on the Shatsky Rise in the north-central Pacific, as well as other sites, researchers have been able to provide a reasonable estimate of the duration and magnitude of this event

    Diffusion of active tracers in fluctuating fields

    Full text link
    The problem of a particle diffusion in a fluctuating scalar field is studied. In contrast to most studies of advection diffusion in random fields we analyze the case where the particle position is also coupled to the dynamics of the field. Physical realizations of this problem are numerous and range from the diffusion of proteins in fluctuating membranes and the diffusion of localized magnetic fields in spin systems. We present exact results for the diffusion constant of particles diffusing in dynamical Gaussian fields in the adiabatic limit where the field evolution is much faster than the particle diffusion. In addition we compute the diffusion constant perturbatively, in the weak coupling limit where the interaction of the particle with the field is small, using a Kubo-type relation. Finally we construct a simple toy model which can be solved exactly.Comment: 13 pages, 1 figur
    corecore