18,321 research outputs found

    Effective diffusion constant in a two dimensional medium of charged point scatterers

    Full text link
    We obtain exact results for the effective diffusion constant of a two dimensional Langevin tracer particle in the force field generated by charged point scatterers with quenched positions. We show that if the point scatterers have a screened Coulomb (Yukawa) potential and are uniformly and independently distributed then the effective diffusion constant obeys the Volgel-Fulcher-Tammann law where it vanishes. Exact results are also obtained for pure Coulomb scatterers frozen in an equilibrium configuration of the same temperature as that of the tracer.Comment: 9 pages IOP LaTex, no figure

    Continuum Derrida Approach to Drift and Diffusivity in Random Media

    Full text link
    By means of rather general arguments, based on an approach due to Derrida that makes use of samples of finite size, we analyse the effective diffusivity and drift tensors in certain types of random medium in which the motion of the particles is controlled by molecular diffusion and a local flow field with known statistical properties. The power of the Derrida method is that it uses the equilibrium probability distribution, that exists for each {\em finite} sample, to compute asymptotic behaviour at large times in the {\em infinite} medium. In certain cases, where this equilibrium situation is associated with a vanishing microcurrent, our results demonstrate the equality of the renormalization processes for the effective drift and diffusivity tensors. This establishes, for those cases, a Ward identity previously verified only to two-loop order in perturbation theory in certain models. The technique can be applied also to media in which the diffusivity exhibits spatial fluctuations. We derive a simple relationship between the effective diffusivity in this case and that for an associated gradient drift problem that provides an interesting constraint on previously conjectured results.Comment: 18 pages, Latex, DAMTP-96-8

    Solution of large scale nuclear structure problems by wave function factorization

    Full text link
    Low-lying shell model states may be approximated accurately by a sum over products of proton and neutron states. The optimal factors are determined by a variational principle and result from the solution of rather low-dimensional eigenvalue problems. Application of this method to sd-shell nuclei, pf-shell nuclei, and to no-core shell model problems shows that very accurate approximations to the exact solutions may be obtained. Their energies, quantum numbers and overlaps with exact eigenstates converge exponentially fast as the number of retained factors is increased.Comment: 12 pages, 12 figures (from 15 eps files) include

    Inequalities for low-energy symmetric nuclear matter

    Full text link
    Using effective field theory we prove inequalities for the correlations of two-nucleon operators in low-energy symmetric nuclear matter. For physical values of operator coefficients in the effective Lagrangian, the S = 1, I = 0 channel correlations must have the lowest energy and longest correlation length in the two-nucleon sector. This result is valid at nonzero density and temperature.Comment: 9 page

    Performance and power regulation characteristics of two aileron-controlled rotors and a pitchable tip-controlled rotor on the Mod-O turbine

    Get PDF
    Tests were conducted on the DOE/NASA mod-0 horizontal axis wind turbine to compare and evaluate the performance and the power regulation characteristics of two aileron-controlled rotors and a pitchable tip-controlled rotor. The two aileron-controlled rotor configurations used 20 and 38 percent chord ailerons, while the tip-controlled rotor had a pitchable blade tip. The ability of the control surfaces to regulate power was determined by measuring the change in power caused by an incremental change in the deflection angle of the control surface. The data shows that the change in power per degree of deflection angle for the tip-controlled rotor was four times the corresponding value for the 2- percent chord ailerons. The root mean square power deviation about a power setpoint was highest for the 20 percent chord aileron, and lowest for the 38 percent chord aileron

    Current-induced nuclear-spin activation in a two-dimensional electron gas

    Full text link
    Electrically detected nuclear magnetic resonance was studied in detail in a two-dimensional electron gas as a function of current bias and temperature. We show that applying a relatively modest dc-current bias, I_dc ~ 0.5 microAmps, can induce a re-entrant and even enhanced nuclear spin signal compared with the signal obtained under similar thermal equilibrium conditions at zero current bias. Our observations suggest that dynamic nuclear spin polarization by small current flow is possible in a two-dimensional electron gas, allowing for easy manipulation of the nuclear spin by simple switching of a dc current.Comment: 5 pages, 3 fig

    Screening of classical Casimir forces by electrolytes in semi-infinite geometries

    Full text link
    We study the electrostatic Casimir effect and related phenomena in equilibrium statistical mechanics of classical (non-quantum) charged fluids. The prototype model consists of two identical dielectric slabs in empty space (the pure Casimir effect) or in the presence of an electrolyte between the slabs. In the latter case, it is generally believed that the long-ranged Casimir force due to thermal fluctuations in the slabs is screened by the electrolyte into some residual short-ranged force. The screening mechanism is based on a "separation hypothesis": thermal fluctuations of the electrostatic field in the slabs can be treated separately from the pure image effects of the "inert" slabs on the electrolyte particles. In this paper, by using a phenomenological approach under certain conditions, the separation hypothesis is shown to be valid. The phenomenology is tested on a microscopic model in which the conducting slabs and the electrolyte are modelled by the symmetric Coulomb gases of point-like charges with different particle fugacities. The model is solved in the high-temperature Debye-H\"uckel limit (in two and three dimensions) and at the free fermion point of the Thirring representation of the two-dimensional Coulomb gas. The Debye-H\"uckel theory of a Coulomb gas between dielectric walls is also solved.Comment: 25 pages, 2 figure

    An Extraordinary Scattered Broad Emission Line in a Type 2 QSO

    Get PDF
    An infrared-selected, narrow-line QSO has been found to exhibit an extraordinarily broad Halpha emission line in polarized light. Both the extreme width (35,000 km/sec full-width at zero intensity) and 3,000 km/sec redshift of the line centroid with respect to the systemic velocity suggest emission in a deep gravitational potential. An extremely red polarized continuum and partial scattering of the narrow lines at a position angle common to the broad-line emission imply extensive obscuration, with few unimpeded lines of sight to the nucleus.Comment: 4 pages, 1 figure, to appear in the Astrophysical Journal Letter
    • …
    corecore