18,356 research outputs found

    Poissonian bursts in e-mail correspondence

    Full text link
    Recent work has shown that the distribution of inter-event times for e-mail communication exhibits a heavy tail which is statistically consistent with a cascading Poisson process. In this work we extend the analysis to higher-order statistics, using the Fano and Allan factors to quantify the extent to which the empirical data depart from the known correlations of Poissonian statistics. The analysis shows that the higher-order statistics from the empirical data is indistinguishable from that of randomly reordered time series, thus demonstrating that e-mail correspondence is no more bursty or correlated than a Poisson process. Furthermore synthetic data sets generated by a cascading Poisson process replicate the burstiness and correlations observed in the empirical data. Finally, a simple rescaling analysis using the best-estimate rate of activity, confirms that the empirically observed correlations arise from a non-homogeneus Poisson process

    Development of GaAs and GaAs/1-x/P/x/ thin-film bipolar transistors Final report

    Get PDF
    Development of GaAs and GaAs/1-xPx thin film bipolar transistor

    Shell Model Monte Carlo method in the pnpn-formalism and applications to the Zr and Mo isotopes

    Full text link
    We report on the development of a new shell-model Monte Carlo algorithm which uses the proton-neutron formalism. Shell model Monte Carlo methods, within the isospin formulation, have been successfully used in large-scale shell-model calculations. Motivation for this work is to extend the feasibility of these methods to shell-model studies involving non-identical proton and neutron valence spaces. We show the viability of the new approach with some test results. Finally, we use a realistic nucleon-nucleon interaction in the model space described by (1p_1/2,0g_9/2) proton and (1d_5/2,2s_1/2,1d_3/2,0g_7/2,0h_11/2) neutron orbitals above the Sr-88 core to calculate ground-state energies, binding energies, B(E2) strengths, and to study pairing properties of the even-even 90-104 Zr and 92-106 Mo isotope chains

    Inequalities for low-energy symmetric nuclear matter

    Full text link
    Using effective field theory we prove inequalities for the correlations of two-nucleon operators in low-energy symmetric nuclear matter. For physical values of operator coefficients in the effective Lagrangian, the S = 1, I = 0 channel correlations must have the lowest energy and longest correlation length in the two-nucleon sector. This result is valid at nonzero density and temperature.Comment: 9 page

    Overscreening in 1D lattice Coulomb gas model of ionic liquids

    Full text link
    Overscreening in the charge distribution of ionic liquids at electrified interfaces is shown to proceed from purely electrostatic and steric interactions in an exactly soluble one dimensional lattice Coulomb gas model. Being not a mean-field effect, our results suggest that even in higher dimensional systems the overscreening could be accounted for by a more accurate treatment of the basic lattice Coulomb gas model, that goes beyond the mean field level of approximation, without any additional interactions.Comment: 4 pages 5 .eps figure
    • …
    corecore