11 research outputs found

    Diazotroph Activity in Surface Narragansett Bay Sediments in Summer is Stimulated by Hypoxia and Organic Matter Delivery

    Get PDF
    Bacteria that carry out many processes of the nitrogen cycle inhabit estuarine sediments. Denitrification is known to be a dominant process causing estuarine sediments to behave as net nitrogen sinks. However, measurements of nitrogen fluxes in the sediments of Narragansett Bay, Rhode Island, USA, have at times revealed high rates of net nitrogen (N2) fixation. Whereas changes in primary production, in magnitude and phenology, within Narragansett Bay have been identified as possible causes for these changes in nitrogen cycling within the benthos, a factor that has not been examined thus far is seasonal hypoxia. Since anaerobic diazotrophs figure so prominently within the sediments of Narragansett Bay, we hypothesized that dissolved oxygen concentrations in the bottom waters affect their activity. In order to explore this relationship, we measured the activity of diazotrophs in the surface sediments of 3 study areas during the summers of 2013 and 2014 using the acetylene reduction assay. We explored the effects of several water quality parameters on nitrogenase activity including, among others, dissolved oxygen and chlorophyll concentrations. Our measurements of nitrogenase activity were generally low, ranging between 2 and 5 nmol ethylene g-1 d-1 but spiked to 16 nmol ethylene g-1 d-1 at an area experiencing severe hypoxia in July 2013. Our data suggest that diazotrophy in estuarine sediments is enhanced when the benthos experiences very low dissolved oxygen in conjunction with recent influxes of autochthonous organic matter. Experiments with sediment core incubations conducted in the laboratory support our hypothesis that low dissolved oxygen and organic matter additions promote N2 fixation

    A Re-assessment of Narragansett Bay Benthic Habitat Quality Between 1988 and 2008

    No full text
    The first bay-wide synoptic survey of benthic habitat quality in Narragansett Bay, Rhode Island, USA, was conducted in August of 1988. Twenty years later, we revisited the same sampling locations as the original survey using similar sediment profile imagery technology and analysis tools. Like estuaries throughout the US, increased temperatures and reductions to anthropogenic nutrient inputs have cumulatively affected Narragansett Bay in the intervening 20 years. To understand how these changes may have influenced benthic organic enrichment and habitat quality, we compared the prevalence and spatial arrangement of benthic biotopes (i.e., biotic and abiotic benthic descriptions) between 1988 and 2008 surveys. Biotopes dominated by Ampelisca spp. tubiculous amphipods increased \u3efivefold between 1988 and 2008, and expanded into the more urban, anthropogenically stressed Providence River estuary. Ampelisca beds occurred at critical boundaries in organic enrichment and habitat quality in both years and indicated the quantity of organic matter reaching the benthos. In general, benthic biotopes reflect the degree of benthic-pelagic coupling and are an important link between estuarine water quality and other marine life. As estuaries globally cope with the effects of increased warming and legislated anthropogenic nutrient reductions, rapid assessments of benthic biotopes will be critical for understanding changes to whole-estuary condition as a result of these cumulative stressors
    corecore