6 research outputs found

    A hierarchy for modeling high speed propulsion systems

    Get PDF
    General research efforts on reduced order propulsion models for control systems design are overviewed. Methods for modeling high speed propulsion systems are discussed including internal flow propulsion systems that do not contain rotating machinery, such as inlets, ramjets, and scramjets. The discussion is separated into four areas: (1) computational fluid dynamics models for the entire nonlinear system or high order nonlinear models; (2) high order linearized models derived from fundamental physics; (3) low order linear models obtained from the other high order models; and (4) low order nonlinear models (order here refers to the number of dynamic states). Included in the discussion are any special considerations based on the relevant control system designs. The methods discussed are for the quasi-one-dimensional Euler equations of gasdynamic flow. The essential nonlinear features represented are large amplitude nonlinear waves, including moving normal shocks, hammershocks, simple subsonic combustion via heat addition, temperature dependent gases, detonations, and thermal choking. The report also contains a comprehensive list of papers and theses generated by this grant

    Approximate truncated balanced realizations for infinite dimensional systems

    Get PDF
    This paper presents an approximate method for obtaining truncated balance realizations of systems represented by non-rational transfer functions, that is infinite dimensional systems. It is based on the approximation to the Hankel operator

    Physical lumping methods for developing linear reduced models for high speed propulsion systems

    Get PDF
    In gasdynamic systems, information travels in one direction for supersonic flow and in both directions for subsonic flow. A shock occurs at the transition from supersonic to subsonic flow. Thus, to simulate these systems, any simulation method implemented for the quasi-one-dimensional Euler equations must have the ability to capture the shock. In this paper, a technique combining both backward and central differencing is presented. The equations are subsequently linearized about an operating point and formulated into a linear state space model. After proper implementation of the boundary conditions, the model order is reduced from 123 to less than 10 using the Schur method of balancing. Simulations comparing frequency and step response of the reduced order model and the original system models are presented

    Analysis of the Space Shuttle main engine simulation

    Get PDF
    This is a final report on an analysis of the Space Shuttle Main Engine Program, a digital simulator code written in Fortran. The research was undertaken in ultimate support of future design studies of a shuttle life-extending Intelligent Control System (ICS). These studies are to be conducted by NASA Lewis Space Research Center. The primary purpose of the analysis was to define the means to achieve a faster running simulation, and to determine if additional hardware would be necessary for speeding up simulations for the ICS project. In particular, the analysis was to consider the use of custom integrators based on the Matrix Stability Region Placement (MSRP) method. In addition to speed of execution, other qualities of the software were to be examined. Among these are the accuracy of computations, the useability of the simulation system, and the maintainability of the program and data files. Accuracy involves control of truncation error of the methods, and roundoff error induced by floating point operations. It also involves the requirement that the user be fully aware of the model that the simulator is implementing

    Improved large perturbation propulsion models for control system design (1988-1989) and large perturbation models of high velocity propulsion systems (1989-1990) and reduced order propulsion models for control system design (1990-1991)

    Get PDF
    Methods for modeling high speed propulsion systems will be discussed. Included in this category are internal flow propulsion systems without rotating machinery, such as inlets, ramjets, and scramjets. Among the modeling topics discussed are modeling of linear isentropic flow, heat exchange, gasdynamics, lumped parameter systems, and infinite dimensional systems. Furthermore, a generalized overview of modeling high speed propulsion systems is presented in this collection of papers
    corecore