39 research outputs found

    Supersymmetric non-linear sigma-models with boundaries revisited

    Full text link
    We study two-dimensional supersymmetric non-linear sigma-models with boundaries. We derive the most general family of boundary conditions in the non-supersymmetric case. Next we show that no further conditions arise when passing to the N=1 model. We present a manifest N=1 off-shell formulation. The analysis is greatly simplified compared to previous studies and there is no need to introduce non-local superspaces nor to go (partially) on-shell. Whether or not torsion is present does not modify the discussion. Subsequently, we determine under which conditions a second supersymmetry exists. As for the case without boundaries, two covariantly constant complex structures are needed. However, because of the presence of the boundary, one gets expressed in terms of the other one and the remainder of the geometric data. Finally we recast some of our results in N=2 superspace and discuss applications.Comment: LaTeX, 23 page

    Universal de Sitter solutions at tree-level

    Full text link
    Type IIA string theory compactified on SU(3)-structure manifolds with orientifolds allows for classical de Sitter solutions in four dimensions. In this paper we investigate these solutions from a ten-dimensional point of view. In particular, we demonstrate that there exists an attractive class of de Sitter solutions, whose geometry, fluxes and source terms can be entirely written in terms of the universal forms that are defined on all SU(3)-structure manifolds. These are the forms J and Omega, defining the SU(3)-structure itself, and the torsion classes. The existence of such universal de Sitter solutions is governed by easy-to-verify conditions on the SU(3)-structure, rendering the problem of finding dS solutions purely geometrical. We point out that the known (unstable) solution coming from the compactification on SU(2)x SU(2) is of this kind.Comment: 20 pages, 3 figures, v2: added reference

    Tachyonic Inflation in a Warped String Background

    Full text link
    We analyze observational constraints on the parameter space of tachyonic inflation with a Gaussian potential and discuss some predictions of this scenario. As was shown by Kofman and Linde, it is extremely problematic to achieve the required range of parameters in conventional string compactifications. We investigate if the situation can be improved in more general compactifications with a warped metric and varying dilaton. The simplest examples are the warped throat geometries that arise in the vicinity of of a large number of space-filling D-branes. We find that the parameter range for inflation can be accommodated in the background of D6-branes wrapping a three-cycle in type IIA. We comment on the requirements that have to be met in order to realize this scenario in an explicit string compactification.Comment: Latex, JHEP class, 20 pages, 4 figures. v2: references added, small error in section 7 corrected, published versio
    corecore