35 research outputs found

    Cellular heterogeneity in the mouse esophagus implicates the presence of a nonquiescent epithelial stem cell population

    Get PDF
    Because the esophageal epithelium lacks a defined stem cell niche, it is unclear whether all basal epithelial cells in the adult esophagus are functionally equivalent. In this study, we showed that basal cells in the mouse esophagus contained a heterogeneous population of epithelial cells, similar to other rapidly cycling tissues such as the intestine or skin. Using a combination of cell-surface markers, we separated primary esophageal tissue into distinct cell populations that harbored differences in stem cell potential. We also used an in vitro 3D organoid assay to demonstrate that Sox2, Wnt, and bone morphogenetic protein signaling regulate esophageal self-renewal. Finally, we labeled proliferating basal epithelial cells in vivo to show differing cell-cycle profiles and proliferation kinetics. Based on our results, we propose that a nonquiescent stem cell population resides in the basal epithelium of the mouse esophagus

    Oral epithelial cell sheets engraftment for esophageal strictures after endoscopic submucosal dissection of squamous cell carcinoma and airplane transportation

    Get PDF
    Endoscopic submucosal dissection (ESD) permits en bloc removal of superficial oesophageal squamous cell carcinoma (ESCC). However, post-procedure stricture is common after ESD for widespread tumours, and multiple endoscopic balloon dilation (EBD) procedures are required. We aimed to evaluate the safety and effectiveness of endoscopic transplantation of tissue-engineered autologous oral mucosal epithelial cell sheets that had been transported by air over a distance of 1200?km in controlling postprocedural oesophageal stricture. Ten patients who underwent complete circular or semicircular ESD for ESCC were transplanted with cell sheets. The safety of the entire process including cell sheet preparation, transport, ESD and cell sheet transplantation was assessed. The incidence of oesophageal stricture, number of EBD sessions, and time until epithelialization were investigated. Each ESD was successfully performed, with subsequent cell sheet engrafting carried out safely. Following cell sheet transplantation, the luminal stenosis rate was 40%, while the median number of EBD sessions was 0. The median post-ESD ulcer healing period was rather short at 36 days. There were no significant complications at any stage of the process. Cell sheet transplantation and preparation at distant sites and transportation by air could be a safe and promising regenerative medicine technology

    Gene expression profiling reveals potential prognostic biomarkers associated with the progression of heart failure

    Get PDF
    Abstract BACKGROUND: Heart failure (HF) is the most common cause of morbidity and mortality in developed countries. Here, we identify biologically relevant transcripts that are significantly altered in the early phase of myocardial infarction and are associated with the development of post-myocardial infarction HF. METHODS: We collected peripheral blood samples from patients with ST-segment elevation myocardial infarction (STEMI): n = 111 and n = 41 patients from the study and validation groups, respectively. Control groups comprised patients with a stable coronary artery disease and without a history of myocardial infarction. Based on plasma NT-proBNP level and left ventricular ejection fraction parameters the STEMI patients were divided into HF and non-HF groups. Microarrays were used to analyze mRNA levels in peripheral blood mononuclear cells (PBMCs) isolated from the study group at four time points and control group. Microarray results were validated by RT-qPCR using whole blood RNA from the validation group. RESULTS: Samples from the first three time points (admission, discharge, and 1 month after AMI) were compared with the samples from the same patients collected 6 months after AMI (stable phase) and with the control group. The greatest differences in transcriptional profiles were observed on admission and they gradually stabilized during the follow-up. We have also identified a set of genes the expression of which on the first day of STEMI differed significantly between patients who developed HF after 6 months of observation and those who did not. RNASE1, FMN1, and JDP2 were selected for further analysis and their early up-regulation was confirmed in HF patients from both the study and validation groups. Significant correlations were found between expression levels of these biomarkers and clinical parameters. The receiver operating characteristic (ROC) curves indicated a good prognostic value of the genes chosen. CONCLUSIONS: This study demonstrates an altered gene expression profile in PBMCs during acute myocardial infarction and through the follow-up. The identified gene expression changes at the early phase of STEMI that differentiated the patients who developed HF from those who did not could serve as a convenient tool contributing to the prognosis of heart failure

    Transitional basal cells at the squamous–columnar junction generate Barrett’s oesophagus

    No full text
    In several organ systems, the transitional zone between different types of epithelium is a hotspot for pre-neoplastic metaplasia and malignancy, but the cells of origin for these metaplastic epithelia and subsequent malignancies remain unknown. In the case of Barrett\u27s oesophagus, intestinal metaplasia occurs at the gastro-oesophageal junction, where stratified squamous epithelium transitions into simple columnar cells. On the basis of a number of experimental models, several alternative cell types have been proposed as the source of this metaplasia but in all cases the evidence is inconclusive: no model completely mimics Barrett\u27s oesophagus in terms of the presence of intestinal goblet cells. Here we describe a transitional columnar epithelium with distinct basal progenitor cells (p63 + KRT5 + KRT7 +) at the squamous-columnar junction of the upper gastrointestinal tract in a mouse model. We use multiple models and lineage tracing strategies to show that this squamous-columnar junction basal cell population serves as a source of progenitors for the transitional epithelium. On ectopic expression of CDX2, these transitional basal progenitors differentiate into intestinal-like epithelium (including goblet cells) and thereby reproduce Barrett\u27s metaplasia. A similar transitional columnar epithelium is present at the transitional zones of other mouse tissues (including the anorectal junction) as well as in the gastro-oesophageal junction in the human gut. Acid reflux-induced oesophagitis and the multilayered epithelium (believed to be a precursor of Barrett\u27s oesophagus) are both characterized by the expansion of the transitional basal progenitor cells. Our findings reveal a previously unidentified transitional zone in the epithelium of the upper gastrointestinal tract and provide evidence that the p63 + KRT5 + KRT7 + basal cells in this zone are the cells of origin for multi-layered epithelium and Barrett\u27s oesophagus
    corecore