6 research outputs found

    Covariation between brain size and immunity in birds: implications for brain size evolution

    No full text
    Parasitism can negatively affect learning and cognition, setting the scene for coevolution between brain and immunity. Greater susceptibility to parasitism by males may impair their cognitive ability, and relatively greater male investment in immunity could compensate for greater susceptibility to parasites, in particular when males have a relatively large brain. We analysed covariation between relative size of immune defence organs and brain in juvenile and adult birds. The relative size of the bursa of Fabricius and the spleen in adults covaried positively with relative brain size across bird species. The relative size of these two immune defence organs covaried with sex differences in relative size of the brain, indicating that the relationship between immune defence and brain size was stronger for males. In contrast, liver and heart size or sexual size dimorphism in size did not covary with immune defence. Thus, species in which males have relatively large brains also have relatively large immune defence organs

    The evolution of hippocampus volume and brain size in relation to food hoarding in birds

    No full text
    Food-hoarding birds frequently use spatial memory to relocate their caches, thus they may evolve a larger hippocampus in their brain than non-hoarder species. However, previous studies testing for such interspecific relationships provided conflicting results. In addition, food hoarding may be a cognitively complex task involving elaboration of a variety of brain regions, even outside of the hippocampus. Hence, specialization to food hoarding may also result in the enlargement of the overall brain. In a phylogenetic analysis of distantly related birds, we studied the interspecific association between food hoarding and the size of different brain regions, each reflecting different resolutions. After adjusting for allometric effects, the relative volume of the hippocampus and the relative size of the entire brain were each positively related to the degree of food-hoarding specialization, even after controlling for migration and brood parasitism. We also found some significant evidence for the relative volume of the telencephalon being associated with food hoarding, but this relationship was dependent on the approach we used. Hence, neural adaptation to food hoarding may favour the evolution of different brain structures
    corecore