949 research outputs found

    Exploring Diet, Physical Activity, and Self-Reported Health Status Among Individuals in the Medically Underserved Population

    Get PDF
    The primary purpose of this study is to determine if certain lifestyle and health behaviors (e.g. smoking, physical activity, diet) in the medically underserved population have any influence on particular health statuses. This study also looked to determine if these health behaviors resulted in particular medical aliments being more prevalent or specific to this community. The secondary purpose of this study aims to gain information that may help health care providers practicing in this community to earlier identify risk factors in patients before a medical problem becomes more severe, difficult and expensive to treat. A survey, adapted from the CDC\u27s Behavioral Risk Factor Surveillance System (BRFSS), was created to allow for the collection of descriptive statistical data. The survey contains questions on the various topics of diet, physical activity, chronic diseases, and self-perception of overall health status. The survey was distributed to 20 older adult participants at Hebni Nutrition, LLC, all from disadvantaged backgrounds. Descriptive statistics were used to analyze the data. Of the 20 surveys collected, about half of the respondents reported consuming close to the recommended fruit and vegetable servings and participating in regular physical activity. Furthermore, the participants reported rates of diabetes and hypertension well above average. This study\u27s results were inconclusive as to whether any specific health behaviors among medically underserved individuals influence the prevalence of chronic diseases in this population; more likely a combination of many factors and overall poorer health habits that persist over a lifetime are contributors to chronic diseases among the medically underserved population

    Learning about compact binary merger: the interplay between numerical relativity and gravitational-wave astronomy

    Get PDF
    Activities in data analysis and numerical simulation of gravitational waves have to date largely proceeded independently. In this work we study how waveforms obtained from numerical simulations could be effectively used within the data analysis effort to search for gravitational waves from black hole binaries. We propose measures to quantify the accuracy of numerical waveforms for the purpose of data analysis and study how sensitive the analysis is to errors in the waveforms. We estimate that ~100 templates (and ~10 simulations with different mass ratios) are needed to detect waves from non-spinning binary black holes with total masses in the range 100 Msun < M < 400 Msun using initial LIGO. Of course, many more simulation runs will be needed to confirm that the correct physics is captured in the numerical evolutions. From this perspective, we also discuss sources of systematic errors in numerical waveform extraction and provide order of magnitude estimates for the computational cost of simulations that could be used to estimate the cost of parameter space surveys. Finally, we discuss what information from near-future numerical simulations of compact binary systems would be most useful for enhancing the detectability of such events with contemporary gravitational wave detectors and emphasize the role of numerical simulations for the interpretation of eventual gravitational-wave observations.Comment: 19 pages, 12 figure

    Climate Dependent Heat Stress Mitigation Modeling for Dairy Cattle Housing

    Get PDF
    Dairy cattle are susceptible to heat stress with reported milk production loss exceeding 1.2 billion dollars in 2010. Heat stress occurs when the local thermal environment prevents adequate dissipation of metabolic heat production over extended periods. Implementing mitigation strategies in order to reduce heat stress has been a crucial need as dairy housing has transitioned from pasture to indoor housing systems. In order to maximize production, producers need the most effective cooling system to reduce heat stress. A heat stress mitigation model was developed using TMY3 data sets as inputs. The objectives of this research were to: (i) analyze the thermal environment’s ability to reduce heat stress in dairy cattle in selected regions using TMY3 data, (ii) model Holstein cattle subjected to various environmental modification systems (elevated airspeed, evaporative pad cooling, direct sprinkling) by region, (iii) create a universal barn/cooling system model to apply to selected regions with given TMY3 data inputs, and (iv) develop contour maps with optimal cooling system recommendations throughout the United States. A transient thermal balance model was developed using equations and parameters from published heat stress models in order to quantify heat dissipation from a dairy cow to her environment. The model was initially tested and evaluated using two TMY3 stations (Fresno, California SN:723890 and Eau Claire, Wisconsin SN:726435). The model’s predictions were within one standard deviation of field data. Once validated, the model was applied to all 215 TMY3 Class 1 stations and contour maps of the U.S. were created for producers to determine which cooling strategy is the most economical in their region

    Large-scale Oscillation of Structure-Related DNA Sequence Features in Human Chromosome 21

    Full text link
    Human chromosome 21 is the only chromosome in human genome that exhibits oscillation of (G+C)-content of cycle length of hundreds kilobases (500 kb near the right telomere). We aim at establishing the existence of similar periodicity in structure-related sequence features in order to relate this (G+C)% oscillation to other biological phenomena. The following quantities are shown to oscillate with the same 500kb periodicity in human chromosome 21: binding energy calculated by two sets of dinucleotide-based thermodynamic parameters, AA/TT and AAA/TTT bi-/tri-nucleotide density, 5'-TA-3' dinucleotide density, and signal for 10/11-base periodicity of AA/TT or AAA/TTT. These intrinsic quantities are related to structural features of the double helix of DNA molecules, such as base-pair binding, untwisting/unwinding, stiffness, and a putative tendency for nucleosome formation.Comment: submitted to Physical Review

    142: Low dose thalidomide maintenance in myeloma patients after autologous stem cell transplantation

    Get PDF

    Radiochemical separation of indium by amalgam-exchange

    Full text link
    The radiochemical separation of indium by an amalgam-exchange technique has been critically evaluated for the aqueous hydrogen bromide system. The efficiency and contamination of the separation has been studied using tracers of 19 different representative elements. Yields of contaminating elements are reduced in most cases to less than 0.1 %, and indium yields are usually above 95 %. The procedure requires no special equipment, and takes about 11 min overall. A number of factors affecting the separation have been studied and improved.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/32327/1/0000397.pd
    • …
    corecore