39 research outputs found

    Hexa-arginine enhanced uptake and residualization of selective high affinity ligands by Raji lymphoma cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A variety of arginine-rich peptide sequences similar to those found in viral proteins have been conjugated to other molecules to facilitate their transport into the cytoplasm and nucleus of targeted cells. The selective high affinity ligand (SHAL) (DvLPBaPPP)<sub>2</sub>LLDo, which was developed to bind only to cells expressing HLA-DR10, has been conjugated to one of these peptide transduction domains, hexa-arginine, to assess the impact of the peptide on SHAL uptake and internalization by Raji cells, a B-cell lymphoma.</p> <p>Results</p> <p>An analog of the SHAL (DvLPBaPPP)<sub>2</sub>LLDo containing a hexa-arginine peptide was created by adding six D-arginine residues sequentially to a lysine inserted in the SHAL's linker. SHAL binding, internalization and residualization by Raji cells expressing HLA-DR10 were examined using whole cell binding assays and confocal microscopy. Raji cells were observed to bind two fold more <sup>111</sup>In-labeled hexa-arginine SHAL analog than Raji cells treated with the parent SHAL. Three fold more hexa-arginine SHAL remained associated with the Raji cells after washing, suggesting that the peptide also enhanced residualization of the <sup>111</sup>In transported into cells. Confocal microscopy showed both SHALs localized in the cytoplasm of Raji cells, whereas a fraction of the hexa-arginine SHAL localized in the nucleus.</p> <p>Conclusion</p> <p>The incorporation of a hexa-D-arginine peptide into the linker of the SHAL (DvLPBaPPP)<sub>2</sub>LLDo enhanced both the uptake and residualization of the SHAL analog by Raji cells. In contrast to the abundant cell surface binding observed with Lym-1 antibody, the majority of (DvLPBaPPP)<sub>2</sub>LArg6AcLLDo and the parent SHAL were internalized. Some of the internalized hexa-arginine SHAL analog was also associated with the nucleus. These results demonstrate that several important SHAL properties, including uptake, internalization, retention and possibly intracellular distribution, can be enhanced or modified by conjugating the SHALs to a short polypeptide.</p

    Turbulent flow as a cause for underestimating coronary flow reserve measured by Doppler guide wire

    Get PDF
    BACKGROUND: Doppler-tipped coronary guide-wires (FW) are well-established tools in interventional cardiology to quantitatively analyze coronary blood flow. Doppler wires are used to measure the coronary flow velocity reserve (CFVR). The CFVR remains reduced in some patients despite anatomically successful coronary angioplasty. It was the aim of our study to test the influence of changes in flow profile on the validity of intra-coronary Doppler flow velocity measurements in vitro. It is still unclear whether turbulent flow in coronary arteries is of importance for physiologic studies in vivo. METHODS: We perfused glass pipes of defined inner diameters (1.5 – 5.5 mm) with heparinized blood in a pulsatile flow model. Laminar and turbulent flow profiles were achieved by varying the flow velocity. The average peak velocity (APV) was recorded using 0.014 inch FW. Flow velocity measurements were also performed in 75 patients during coronary angiography. Coronary hyperemia was induced by intra-coronary injection of adenosine. The APV maximum was taken for further analysis. The mean luminal diameter of the coronary artery at the region of flow velocity measurement was calculated by quantitative angiography in two orthogonal planes. RESULTS: In vitro, the measured APV multiplied with the luminal area revealed a significant correlation to the given perfusion volumes in all diameters under laminar flow conditions (r(2 )> 0.85). Above a critical Reynolds number of 500 – indicating turbulent flow – the volume calculation derived by FW velocity measurement underestimated the actual rate of perfusion by up to 22.5 % (13 Β± 4.6 %). In vivo, the hyperemic APV was measured irrespectively of the inherent deviation towards lower velocities. In 15 of 75 patients (20%) the maximum APV exceeded the velocity of the critical Reynolds number determined by the in vitro experiments. CONCLUSION: Doppler guide wires are a valid tool for exact measurement of coronary flow velocity below a critical Reynolds number of 500. Reaching a coronary flow velocity above the velocity of the critical Reynolds number may result in an underestimation of the CFVR caused by turbulent flow. This underestimation of the flow velocity may reach up to 22.5 % compared to the actual volumetric flow. Cardiologists should consider this phenomena in at least 20 % of patients when measuring CFVR for clinical decision making

    MYC Cooperates with AKT in Prostate Tumorigenesis and Alters Sensitivity to mTOR Inhibitors

    Get PDF
    MYC and phosphoinositide 3-kinase (PI3K)-pathway deregulation are common in human prostate cancer. Through examination of 194 human prostate tumors, we observed statistically significant co-occurrence of MYC amplification and PI3K-pathway alteration, raising the possibility that these two lesions cooperate in prostate cancer progression. To investigate this, we generated bigenic mice in which both activated human AKT1 and human MYC are expressed in the prostate (MPAKT/Hi-MYC model). In contrast to mice expressing AKT1 alone (MPAKT model) or MYC alone (Hi-MYC model), the bigenic phenotype demonstrates accelerated progression of mouse prostate intraepithelial neoplasia (mPIN) to microinvasive disease with disruption of basement membrane, significant stromal remodeling and infiltration of macrophages, B- and T-lymphocytes, similar to inflammation observed in human prostate tumors. In contrast to the reversibility of mPIN lesions in young MPAKT mice after treatment with mTOR inhibitors, Hi-MYC and bigenic MPAKT/Hi-MYC mice were resistant. Additionally, older MPAKT mice showed reduced sensitivity to mTOR inhibition, suggesting that additional genetic events may dampen mTOR dependence. Since increased MYC expression is an early feature of many human prostate cancers, these data have implications for treatment of human prostate cancers with PI3K-pathway alterations using mTOR inhibitors

    Update: Turning the Heat on Cancer

    No full text
    The promise of hyperthermia has yet to be realized, but the fundamental idea and the effects of heat on (cancer) cells are well known. Cell death from exposure to heat is a function of both the intensity of the heat and the length of the exposure. Cells die by necrosis and by apoptosis. Sublethal heat doses sensitize cancer cells to radiation and drugs. Because of advances in chemistry and physics, harnessing the power of heat to kill cancer cells seems achievable now! Using novel systems embodied in the combination of molecular-targeted nanoparticles and hysteretic heating of the nanoparticles with β€œfocused” alternating magnetic frequencies (AMFs), heat delivery can be better controlled. Importantly, hyperthermia does not damage, and may actually enhance, the immune system. Trials in patients are needed to settle the clinical role of new thermal treatment
    corecore