2,592 research outputs found
Spectral Equivalence of Bosons and Fermions in One-Dimensional Harmonic Potentials
Recently, Schmidt and Schnack (cond-mat/9803151, cond-mat/9810036), following
earlier references, reiterate that the specific heat of N non-interacting
bosons in a one-dimensional harmonic well equals that of N fermions in the same
potential. We show that this peculiar relationship between specific heats
results from a more dramatic equivalence between bose and fermi systems.
Namely, we prove that the excitation spectrums of such bose and fermi systems
are spectrally equivalent. Two complementary proofs are provided, one based on
an analysis of the dynamical symmetry group of the N-body system, the other
using combinatoric analysis.Comment: Six Pages, No Figures, Submitted to Phys. Rev.
Collective Modes in a Dilute Bose-Fermi Mixture
We here study the collective excitations of a dilute spin-polarized
Bose-Fermi mixture at zero temperature, considering in particular the features
arising from the interaction between the two species. We show that a
propagating zero-sound mode is possible for the fermions even when they do not
interact among themselves.Comment: latex, 6 eps figure
Two-species magneto-optical trap with 40K and 87Rb
We trap and cool a gas composed of 40K and 87Rb, using a two-species
magneto-optical trap (MOT). This trap represents the first step towards cooling
the Bose-Fermi mixture to quantum degeneracy. Laser light for the MOT is
derived from laser diodes and amplified with a single high power semiconductor
amplifier chip. The four-color laser system is described, and the
single-species and two-species MOTs are characterized. Atom numbers of 1x10^7
40K and 2x10^9 87Rb are trapped in the two-species MOT. Observation of trap
loss due to collisions between species is presented and future prospects for
the experiment are discussed.Comment: 4 pages, 4 figures; accepted for publication in Physical Review
Pauli Blocking of Collisions in a Quantum Degenerate Atomic Fermi Gas
We have produced an interacting quantum degenerate Fermi gas of atoms
composed of two spin-states of magnetically trapped K. The relative
Fermi energies are adjusted by controlling the population in each spin-state.
Measurements of the thermodynamics reveal the resulting imbalance in the mean
energy per particle between the two species, which is as large as a factor of
1.4 at our lowest temperature. This imbalance of energy comes from a
suppression of collisions between atoms in the gas due to the Pauli exclusion
principle. Through measurements of the thermal relaxation rate we have directly
observed this Pauli blocking as a factor of two reduction in the effective
collision cross-section in the quantum degenerate regime.Comment: 11 pages, 4 figure
Resonant control of elastic collisions in an optically trapped Fermi gas of atoms
We have loaded an ultracold gas of fermionic atoms into a far off resonance
optical dipole trap and precisely controlled the spin composition of the
trapped gas. We have measured a magnetic-field Feshbach resonance between atoms
in the two lowest energy spin-states, |9/2, -9/2> and |9/2, -7/2>. The
resonance peaks at a magnetic field of 201.5 plus or minus 1.4 G and has a
width of 8.0 plus or minus 1.1 G. Using this resonance we have changed the
elastic collision cross section in the gas by nearly 3 orders of magnitude.Comment: 4 pages, 3 figure
Evaporative Cooling of a Two-Component Degenerate Fermi Gas
We derive a quantum theory of evaporative cooling for a degenerate Fermi gas
with two constituents and show that the optimum cooling trajectory is
influenced significantly by the quantum statistics of the particles. The
cooling efficiency is reduced at low temperatures due to Pauli blocking of
available final states in each binary collision event. We compare the
theoretical optimum trajectory with experimental data on cooling a quantum
degenerate cloud of potassium-40, and show that temperatures as low as 0.3
times the Fermi temperature can now be achieved.Comment: 6 pages, 4 figure
Three-Fluid Description of the Sympathetic Cooling of a Boson-Fermion Mixture
We present a model for sympathetic cooling of a mixture of fermionic and
bosonic atomic gases in harmonic traps, based on a three-fluid description. The
model confirms the experimentally observed cooling limit of about 0.2 T_F when
only bosons are pumped. We propose sequential cooling -- first pumping of
bosons and afterwards fermions -- as a way to obtain lower temperatures. For
this scheme, our model predicts that temperatures less than 0.1 T_F can be
reached.Comment: 9 pages, 6 figure
Spin Excitations in a Fermi Gas of Atoms
We have experimentally investigated a spin excitation in a quantum degenerate
Fermi gas of atoms. In the hydrodynamic regime the damping time of the
collective excitation is used to probe the quantum behavior of the gas. At
temperatures below the Fermi temperature we measure up to a factor of 2
reduction in the excitation damping time. In addition we observe a strong
excitation energy dependence for this quantum statistical effect.Comment: 4 pages, 3 figure
An Atlas of Spectrophotometric Landolt Standard Stars
We present CCD observations of 102 Landolt standard stars obtained with the
R-C spectrograph on the CTIO 1.5 m telescope. Using stellar atmosphere models
we have extended the flux points to our six spectrophotometric secondary
standards, in both the blue and the red, allowing us to produce flux-calibrated
spectra that span a wavelength range from 3050 \AA to 1.1 \micron. Mean
differences between UBVRI spectrophotometry computed using Bessell's standard
passbands and Landolt's published photometry is found to be 1% or less.
Observers in both hemispheres will find these spectra useful for
flux-calibrating spectra and through the use of accurately constructed
instrumental passbands be able to compute accurate corrections to bring
instrumental magnitudes to any desired standard photometric system
(S-corrections). In addition, by combining empirical and modeled spectra of the
Sun, Sirius and Vega, we calculate and compare synthetic photometry to observed
photometry taken from the literature for these three stars.Comment: Added referee's comments, minor corrections, replaced Table 1
- …