179 research outputs found

    Spectral analysis of heart rate variability: Acquisitionalysis software development

    Get PDF
    This work develops an acquisitionalysis software application to investigate the spectral content of the heart rate variability signal derived from an electrocardiographic (EKG) waveform. The location and strength of the frequency content reveals general information concerning sympathetic and parasympathetic activity within the autonomic nervous system of the study subject. Current investigations into pediatric head trauma patients have revealed specific correlations between spectral content of the heart rate variability and overall patient recovery. The levels of serum catecholamines, specifically epinephrine and norepinephrine, are also investigated for a possible correlation with both trauma severity and spectral power of the heart rate variability signal. Two frequency regions are of particular interest in the power spectral density waveform, the low frequency band (0.01-0.15 Hz) and the high frequency band (0.15-0.50 Hz). The low frequency band is indicative of sympathetic nervous system activity (such as body temperature and arterial blood pressure regulation) as well as some parasympathetic nervous system activity. The high frequency band is indicative of parasympathetic activity (such as respiratory sinus arrhythmia) only. In fact, a prominent peak located at approximately 0.20 Hz (of a normal human adult) represents heart rate variability at the respiratory frequency. Clinical application of the acquisition and analysis techniques described herein has shown that elevated levels of low-frequency HRV power are indicative of improved chances for recovery from severe brain injury. In contrast, brain-dead pediatric head trauma patients were found to possess near-zero low-frequency power. Acute animal studies have shown that decreases in low-frequency HRV power and systemic arterial blood pressure with little change in high-frequency HRV power, may be a characteristic indicator of endotoxin-induced septic shock. The acquisitionalysis package described in this work may, therefore, prove beneficial to critical care medicine, and advance our understanding of cardiovascular neurophysiology

    Size-dependent Catalysis of Chlorovirus Population Growth by a Messy Feeding Predator

    Get PDF
    Many chloroviruses replicate in endosymbiotic zoochlorellae that are protected from infection by their symbiotic host. To reach the high virus concentrations that often occur in natural systems, a mechanism is needed to release zoochlorellae from their hosts. We demonstrate that the ciliate predator Didinium nasutum foraging on zoochlorellae-bearing Paramecium bursaria can release live zoochlorellae from the ruptured prey cell that can then be infected by chloroviruses. The catalysis process is very effective, yielding roughly 95% of the theoretical infectious virus yield as determined by sonication of P. bursaria. Chlorovirus activation is more effective with smaller Didinia, as larger Didinia typically consume entire P. bursaria cells without rupturing them, precluding the release of zoochlorellae. We also show that the timing of Chlorovirus growth is tightly linked to the predator-prey cycle between Didinium and Paramecium, with the most rapid increase in chloroviruses temporally linked to the peak foraging rate of Didinium, supporting the idea that predator-prey cycles can drive cycles of Chlorovirus abundance

    The consumption of viruses returns energy to food chains

    Get PDF
    Viruses impact host cells and have indirect effects on ecosystem processes. Plankton such as ciliates can reduce the abundance of virions in water, but whether virus consumption translates into demographic consequences for the grazers is unknown. Here, we show that small protists not only can consume viruses they also can grow and divide given only viruses to eat. Moreover, the ciliate Halteria sp. foraging on chloroviruses displays dynamics and interaction parameters that are similar to other microbial trophic interactions. These results suggest that the effect of viruses on ecosystems extends beyond (and in contrast to) the viral shunt by redirecting energy up food chains. Many known viruses cause diseases, and consequently, virology has long focused on viruses as pathogens. Viruses also affect ecosystem processes, however, by lysing microbes and causing the release of nutrients (i.e., the viral shunt) and through the indirect consequences of host mortality (1, 2). Both of these research domains place viruses as the top “predator” in their food chains, but like most predators, viruses also can serve as food. Many foragers that swallow water, soil particles, or leaves routinely ingest virus particles. Given the small mass of virus particles relative to other foods, the consumption of viruses is thought to be calorically unimportant (3, 4) and not of sufficient magnitude to influence ecosystem processes. Nonetheless, viruses contain amino acids, nucleic acids, and lipids (5), and if consumed in sufficient quantities could influence the population dynamics of the species that consume them. Some ciliates and flagellates may ingest many viruses (3, 4, 6, 7), but the demographic impact of virus consumption (virovory) is unclear. Here, we investigate the potential for virovory to fuel population growth and alter the pathways of energy flow in food webs. We measured the population growth of Halteria sp. and Paramecium bursaria in foraging trials with and without supplemental chloroviruses. We also tracked the reduction in chloroviruses and fit a classic trophic link model to the data to determine whether the Halteria–chlorovirus interaction can be viewed as a trophic interaction. Finally, we used fluorescent microscopy to confirm the ingestion of chloroviruses by ciliates

    Catalysis of Chlorovirus Production by the Foraging of \u3ci\u3eBursaria truncatella\u3c/i\u3e on \u3ci\u3eParamecia bursaria\u3c/i\u3e Containing Endosymbiotic Algae

    Get PDF
    Chloroviruses are large viruses that replicate in chlorella-like green algae and normally exist as mutualistic endosymbionts (referred to as zoochlorellae) in protists such as Paramecium bursaria. Chlorovirus populations rise and fall in indigenous waters through time; however, the factors involved in these virus fluctuations are still under investigation. Chloroviruses attach to the surface of P. bursaria but cannot infect their zoochlorellae hosts because the viruses cannot reach the zoochlorellae as long as they are in the symbiotic phase. Predators of P. bursaria, such as copepods and didinia, can bring chloroviruses into contact with zoochlorellae by disrupting the paramecia, which results in an increase in virus titers in microcosm experiments. Here, we report that another predator of P. bursaria, Bursaria truncatella, can also increase chlorovirus titers. After two days of foraging on P. bursaria, B. truncatella increased infectious chlorovirus abundance about 20 times above the controls. Shorter term foraging (3 h) resulted in a small increase of chlorovirus titers over the controls and more foraging generated more chloroviruses. Considering that B. truncatella does not release viable zoochlorellae either during foraging or through fecal pellets, where zoochlorellae could be infected by chlorovirus, we suggest a third pathway of predator virus catalysis. By engulfing the entire protist and digesting it slowly, virus replication can occur within the predator and some of the virus is passed out through a waste vacuole. These results provide additional support for the hypothesis that predators of P. bursaria are important drivers of chlorovirus population sizes and dynamics

    Predators catalyze an increase in chloroviruses by foraging on the symbiotic hosts of zoochlorellae

    Get PDF
    Virus population growth depends on contacts between viruses and their hosts. It is often unclear how sufficient contacts are made between viruses and their specific hosts to generate spikes in viral abundance. Here, we show that copepods, acting as predators, can bring aquatic viruses and their algal hosts into contact. Specifically, predation of the protist Paramecium bursaria by copepods resulted in a \u3e100-fold increase in the number of chloroviruses in 1 d. Copepod predation can be seen as an ecological “catalyst” by increasing contacts between chloroviruses and their hosts, zoochlorellae (endosymbiotic algae that live within paramecia), thereby facilitating viral population growth. When feeding, copepods passed P. bursaria through their digestive tract only partially digested, releasing endosymbiotic algae that still supported viral reproduction and resulting in a virus population spike. A simple predator–prey model parameterized for copepods consuming protists generates cycle periods for viruses consistent with those observed in natural ponds. Food webs are replete with similar symbiotic organisms, and we suspect the predator catalyst mechanism is capable of generating blooms for other endosymbiont-targeting viruses. Movie file (.mp4) attached below

    Predators catalyze an increase in chloroviruses by foraging on the symbiotic hosts of zoochlorellae

    Get PDF
    Virus population growth depends on contacts between viruses and their hosts. It is often unclear how sufficient contacts are made between viruses and their specific hosts to generate spikes in viral abundance. Here, we show that copepods, acting as predators, can bring aquatic viruses and their algal hosts into contact. Specifically, predation of the protist Paramecium bursaria by copepods resulted in a \u3e100-fold increase in the number of chloroviruses in 1 d. Copepod predation can be seen as an ecological “catalyst” by increasing contacts between chloroviruses and their hosts, zoochlorellae (endosymbiotic algae that live within paramecia), thereby facilitating viral population growth. When feeding, copepods passed P. bursaria through their digestive tract only partially digested, releasing endosymbiotic algae that still supported viral reproduction and resulting in a virus population spike. A simple predator–prey model parameterized for copepods consuming protists generates cycle periods for viruses consistent with those observed in natural ponds. Food webs are replete with similar symbiotic organisms, and we suspect the predator catalyst mechanism is capable of generating blooms for other endosymbiont-targeting viruses. Movie file (.mp4) attached below

    Chloroviruses lure hosts through long-distance chemical signaling

    Get PDF
    Chloroviruses exist in aquatic systems around the planet where they infect certain eukaryotic green algae that are mutualistic endosymbionts in a variety of protists and metazoans. Natural chlorovirus populations are seasonally dynamic but the precise temporal changes in these populations and the mechanisms that underlie them have, heretofore, been unclear. We recently reported the novel concept that predator/prey-mediated virus activation regulates chlorovirus population dynamics, and in the current manuscript demonstrate virus packaged chemotactic modulation of prey behavior. Viruses have not previously been reported to act as chemotactic/chemo-attractive agents. Rather, viruses as extracellular entities are generally viewed as non-metabolically active spore-like agents that await further infection events upon collisions with appropriate host cells. That a virus might actively contribute to its fate via chemotaxis and change the behavior of an organism independent of infection is unprecedented

    Manager- und transaktionsspezifische Determinanten der Performance von Arbitrage CLOs

    Get PDF
    Der vorliegende Beitrag untersucht die Determinanten der Performance europäischer Arbitrage Collateralized Loan Obligations für das Jahr 2009. Der Fokus liegt dabei auf der Bedeutung der performanceabhängigen Vergütung des CLO-Managers, den Eigenschaften des CLO-Managers und der Transaktionscharakteristika als mögliche Einflussfaktoren der Rating Performance. Es wird gezeigt, dass Transaktionen, bei denen dem CLO-Manager eine Incentive Management Fee gewährt wird, mit einer höheren Wahrscheinlichkeit herabgestuft werden als Transaktionen ohne Incentive Fee. Dieser Befund bestätigt die Hypothese, dass durch die Incentive Fee Risikoanreize für CLO-Manager geschaffen werden. Des Weiteren wird ein positiver Zusammenhang zwischen der Erfahrung bzw. der Größe eines CLO-Managers und der Rating Performance festgestellt. Der Einfluss des Managers auf die Performance einer CLO-Transaktion wird auch an den weiteren in der Studie herangezogenen managerspezifischen Charakteristika wie Typ und Unternehmenssitz bestätigt. Für die Transaktionscharakteristika wird hingegen im betrachteten Untersuchungszeitraum kein signifikanter Einfluss auf die Rating Performance nachgewiesen

    Autonomous tracking and sampling of the deep chlorophyll maximum layer in an open-ocean eddy by a long-range autonomous underwater vehicle

    Get PDF
    © The Author(s), 2020. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Zhang, Y., Kieft, B., Hobson, B. W., Ryan, J. P., Barone, B., Preston, C. M., Roman, B., Raanan, B., Marin,Roman,,III, O'Reilly, T. C., Rueda, C. A., Pargett, D., Yamahara, K. M., Poulos, S., Romano, A., Foreman, G., Ramm, H., Wilson, S. T., DeLong, E. F., Karl, D. M., Birch, J. M., Bellingham, J. G., & Scholin, C. A. Autonomous tracking and sampling of the deep chlorophyll maximum layer in an open-ocean eddy by a long-range autonomous underwater vehicle. IEEE Journal of Oceanic Engineering, 45(4), (2020): 1308-1321, doi:10.1109/JOE.2019.2920217.Phytoplankton communities residing in the open ocean, the largest habitat on Earth, play a key role in global primary production. Through their influence on nutrient supply to the euphotic zone, open-ocean eddies impact the magnitude of primary production and its spatial and temporal distributions. It is important to gain a deeper understanding of the microbial ecology of marine ecosystems under the influence of eddy physics with the aid of advanced technologies. In March and April 2018, we deployed autonomous underwater and surface vehicles in a cyclonic eddy in the North Pacific Subtropical Gyre to investigate the variability of the microbial community in the deep chlorophyll maximum (DCM) layer. One long-range autonomous underwater vehicle (LRAUV) carrying a third-generation Environmental Sample Processor (3G-ESP) autonomously tracked and sampled the DCM layer for four days without surfacing. The sampling LRAUV's vertical position in the DCM layer was maintained by locking onto the isotherm corresponding to the chlorophyll peak. The vehicle ran on tight circles while drifting with the eddy current. This mode of operation enabled a quasi-Lagrangian time series focused on sampling the temporal variation of the DCM population. A companion LRAUV surveyed a cylindrical volume around the sampling LRAUV to monitor spatial and temporal variation in contextual water column properties. The simultaneous sampling and mapping enabled observation of DCM microbial community in its natural frame of reference.10.13039/501100008982 - National Science Foundation 10.13039/100000936 - Gordon and Betty Moore Foundation 10.13039/100000008 - David and Lucile Packard Foundation 10.13039/100016377 - Schmidt Ocean Institute 10.13039/100000893 - Simons Foundatio

    Broad Repertoire of T Cell Autoreactivity Directly from Islets of Donors with Type 1 Diabetes (T1D)

    Get PDF
    Type 1 diabetes (T1D) is an autoimmune disease characterized by the infiltration of lymphocytes into the insulin-producing β-cells in the pancreas. We have isolated live T cells sorted or grown directly from the isolated, handpicked islets of human donors with T1D. We received ~500 islet equivalent EQ of variable purity (10-90%) from 12 donors with T1D (disease duration 0.42-20 years) and from seven control donors and two donors with type 2 diabetes (T2D). A total of 321 T cell lines and clones were derived from the islets of donors with T1D (3 lines from the 9 control donors). These are 131 CD4+ lines and clones, 47 CD8+ lines and 143 lines that contain both CD4+ and CD8+ T cells. From 50 lines and clones examined to date, we have determined the autoreactivity of 19 and have seen a broad repertoire of T cell autoreactivity in the islets, including characterized targets and post-translationally modified targets. Autoreactivity of CD4+ T cell lines was to three different peptides from glutamic acid decarboxylase 65 (GAD; GAD115-127, GAD274-286, GAD555-567), proinsulin76-90, and to chromogranin A or proinsulin expressed by DR4+DQ8+ B cells transduced with lentivirus containing constructs with the open reading frames corresponding to whole autoantigens. Reactivity to modified peptides included the glucose-regulated protein 78 and islet amyloid polypeptide with arginine to citrulline modifications (GRP78292-305(Arg-Cit297) and IAPP65-84(Arg-Cit 73, 81)), deaminations (IA-2545-562(Gln-Glu 548, 551, 556), and to several insulin hybrid peptides. These autoreactive CD4+ T cell lines and clones secreted only pro-inflammatory cytokines (IFN-γ, TNFα) upon peptide stimulation. For CD8+ T cells from islets, from one donor with T1D, we saw binding of a pool of HLA-A2 pentamers loaded with insulin B10-18, IA-2797-805 and insulin specific glucose-6-phosphatase catalytic subunit related protein, IGRP265-273. These results have implications for the development of successful prevention and reversal therapeutic strategies in T1D
    • …
    corecore