61 research outputs found
Sinoporphyrin Sodium-Mediated Sonodynamic Therapy Inhibits RIP3 Expression and Induces Apoptosis in the H446 Small Cell Lung Cancer Cell Line
Background/Aims: Sonodynamic therapy (SDT) is expected to be a new method to solve the clinical problems caused by advanced metastasis in patients with lung cancer. The use of ultrasound has the advantage of being noninvasive, with deep-penetration properties. This study explored the anti-tumor effect of SDT with a new sonosensitizer, sinoporphyrin sodium (DVDMS), on the human small cell lung cancer H446 cell line in vitro and in vivo. Methods: Absorption of DVDMS was detected by a fluorescence spectrophotometer, and DVDMS toxicity was determined using a Cell Counting Kit-8. Mitochondrial membrane potential (MMP) was assessed using the JC-1 fluorescent probe. Cell apoptosis was measured by flow cytometry, and apoptosis-related proteins were detected by western blotting. The expression of cytokines was measured using an enzyme-linked immunosorbent assay and quantitative real-time PCR. To verify the in vitro results, we detected tumor volumes and weight changes in a xenograft nude mouse model after DVDMS-SDT. Hematoxylin and eosin staining was used to observe changes to the tumor, heart, liver, spleen, lung, and kidney of the mice, and immunohistochemistry was used to examine changes in the expression of tumor CD34 and receptor-interacting protein kinase-3 (RIP3), while terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling was used to observe apoptosis in tumor tissues. Results: DVDMS-SDT-treated H446 cells increased the rate of cellular apoptosis and the levels of reactive oxygen species (ROS), cleaved caspase-3, cleaved caspase-8, cleaved caspase-9, and caspase-10, and decreased the levels of MMP, RIP3, B-cell lymphoma 2, vascular endothelial growth factor, and tumor necrosis factor-α. The sonotoxic effect was mediated by ROS and was reduced by a ROS scavenger (N-acetyl-L-cysteine). In the in vivo mouse xenograft model, DVDMS-SDT showed efficient anti-cancer effects with no visible side effects. Conclusion: DVDMS-SDT induced apoptosis in H446 cells, in part by targeting mitochondria through the mitochondria-mediated apoptosis signaling pathway, and the extrinsic apoptosis pathway was also shown to be involved. Both apoptosis and changes in RIP3 expression were closely related to the generation of ROS. DVDMS-SDT will be advantageous for the management of small cell lung cancer due to its noninvasive characteristics
Citreobenzofuran D–F and Phomenone A–B: Five Novel Sesquiterpenoids from the Mangrove-Derived Fungus <i>Penicillium</i> sp. HDN13-494
Five new sesquiterpenoids, citreobenzofuran D–F (1–3) and phomenone A–B (4–5), along with one known compound, xylarenone A (6), were isolated from the culture of the mangrove-derived fungus Penicillium sp. HDN13-494. Their structures were deduced from extensive spectroscopic data, high-resolution electrospray ionization mass spectrometry (HRESIMS), and electronic circular dichroism (ECD) calculations. Furthermore, the absolute structures of 1 were determined by single-crystal X-ray diffraction analysis. Citreobenzofuran E–F (2–3) are eremophilane-type sesquiterpenoids with rare benzofuran frameworks, while phomenone A (4) contains a rare thiomethyl group, which is the first report of this kind of sesquiterpene with sulfur elements in the skeleton. All the compounds were tested for their antimicrobial and antitumor activity, and phomenone B (5) showed moderate activity against Bacillus subtilis, with an MIC value of 6.25 μM
Sorbicillasins A–B and Scirpyrone K from a Deep-Sea-Derived Fungus, Phialocephala sp. FL30r
Two new nitrogen-containing sorbicillinoids named sorbicillasins A and B (1 and 2) and a new 3,4,6-trisubstituted α-pyrone derivative, scirpyrone K (3), together with two known biosynthetically related polyketides (4–5), were isolated from the deep-sea-derived fungus Phialocephala sp. FL30r by using the OSMAC (one strain-many compounds) method. The structures of 1–3, including absolute configurations, were deduced based on MS, NMR, and time-dependent density functional theory (TD-DFT) calculations of specific ECD (electronic circular dichroism) spectra. Compounds 1 and 2 possessed a novel hexahydropyrimido[2,1-a] isoindole moiety, and compound 3 exhibited weak radical scavenging activity against DPPH (2,2-diphenyl-1-picrylhydrazyl) with an IC50 value of 27.9 μM
Overexpression of Global Regulator SCrp Leads to the Discovery of New Angucyclines in <i>Streptomyces</i> sp. XS-16
Six angucyclines including three unreported compounds (1–3) were isolated from Streptomyces sp. XS-16 by overexpressing the native global regulator of SCrp (cyclic AMP receptor). The structures were characterized based on nuclear magnetic resonance (NMR) and spectrometry analysis and assisted by electronic circular dichroism (ECD) calculations. All compounds were tested for their antitumor and antimicrobial activities, and compound 1 showed different inhibitory activities against various tumor cell lines with IC50 values ranging from 0.32 to 5.33 μM
IL-34 and its receptors as predictors of brain metastasis and prognosis in lung adenocarcinoma: Unveiling insights through bioinformatic and immunohistochemical investigations
Background: Brain metastasis (BM) is a prevalent form of metastasis in lung adenocarcinoma (LUAD), necessitating investigations into the underlying mechanisms. Interleukin 34 (IL-34) and its receptors, macrophage colony-stimulating factor-1 receptor (CSF-IR), Syndecan-1 (SDC-1), and protein-tyrosine phosphatase zeta receptor (PTPRZ1), are known to play pivotal roles in the metastasis of malignant tumors, thereby holding promise as potential biomarkers for studying BM in LUAD. Methods: We performed immunohistochemistry to analyze the expression of IL-34, CSF-1R, SDC-1, and PTPRZ1 in 10 pairs of LUAD primary tissues and BMs, along with 96 unpaired primary tissues and 68 unpaired BMs. Subsequently, we evaluated the association between protein expression and the occurrence of BM. Furthermore, Kaplan-Meier survival curve analysis was conducted on both network and clinical data to explore the association between protein expression and patient prognosis and survival. Results: At the protein level, the expression of IL-34 and its receptors showed significant variation between paired primary tumors and BMs in 10 LUAD patients. The levels of IL-34, CSF-1R, and SDC-1 expression are typically elevated in brain metastatic lesions of LUAD compared to primary LUAD tumors. Furthermore, patients with high CSF-1R expression in primary LUAD are at a greater risk of developing brain metastases. High expression of IL-34 and CSF-1R in primary LUAD lesions indicated poor disease-free survival (DFS) and overall survival (OS), while high expression of SDC-1 indicated poor OS. Cox multivariate analysis further revealed that CSF-1R and IL-34+CSF-1R positivity independently affected LUAD OS. These findings were further substantiated in unpaired samples. Conclusions: Our results indicate significant alterations in the expression of IL-34 and its receptors, CSF-1R and SDC-1, between LUAD primary lesions and BMs, with increased expression observed in BMs. LUAD patients with positive CSF-1R expression in primary lesions exhibited a higher likelihood of developing BM, and high expression of IL-34, CSF-1R, and SDC-1 correlated with poor prognosis. These findings contribute novel insights towards identifying potential treatment or diagnostic targets for metastatic LUAD
Saliniquinone Derivatives, Saliniquinones G−I and Heraclemycin E, from the Marine Animal-Derived Nocardiopsis aegyptia HDN19-252
Four new anthraquinone derivatives, namely saliniquinones G−I (1–3) and heraclemycin E (4), were obtained from the Antarctic marine-derived actinomycete Nocardiopsis aegyptia HDN19-252, guided by the Global Natural Products Social (GNPS) molecular networking platform. Their structures, including absolute configurations, were elucidated by extensive NMR, MS, and ECD analyses. Compounds 1 and 2 showed promising inhibitory activity against six tested bacterial strains, including methicillin-resistant coagulase-negative staphylococci (MRCNS), with MIC values ranging from 3.1 to 12.5 μM
Discovery of an Unusual Fatty Acid Amide from the ndgRyo Gene Mutant of Marine-Derived Streptomyces youssoufiensis
NdgRyo, an IclR-like regulator, was selected as the target gene to activate new secondary metabolites in the marine-derived Streptomyces youssoufiensis OUC6819. Inactivation of the ndgRyo gene in S. youssoufiensis OUC6819 led to the accumulation of a new fatty acid amide (1), with an unusual 3-amino-butyl acid as the amine component. Moreover, its parent fatty acid (2) was also discovered both in the wild-type and ΔndgRyo mutant strains, which was for the first time isolated from a natural source. The structures of compounds 1 and 2 were elucidated by combination of LC-MS and NMR spectroscopic analyses. This study demonstrated that the ndgRyo homologs might serve as a target for new compound activation in Streptomyces strains
Cytotoxic Tetrahydroxanthone Dimers from the Mangrove-Associated Fungus Aspergillus versicolor HDN1009
Three new tetrahydroxanthone dimers, 5-epi-asperdichrome (1), versixanthones N (2), and O (3), were isolated from the mangrove-derived fungus Aspergillus versicolor HDN1009. Their structures, including the absolute configurations, were elucidated by NMR, HRMS, and circular dichroism (CD) experiments. Among them, compound 1 was the second example of tetrahydroxanthone dimers, which dimerized by a rare diaryl ether linkage and showed promising antibacterial activities against Vibrio parahemolyticus, Bacillus subtilis, Mycobacterium phlei, and Pseudomonas aeruginosa, with MIC values ranging from 100 μM to 200 μM; whilst compounds 2 and 3 exhibited extensive cytotoxicities against five cancer cell lines (HL-60, K562, H1975, MGC803, and HO-8910), with IC50 values ranging from 1.7 μM to 16.1 μM
- …