430 research outputs found

    Two models of the influenza A M2 channel domain: verification by comparison

    Get PDF
    Background: The influenza M2 protein is a simple membrane protein, containing a single transmembrane helix. It is representative of a very large family of single-transmembrane helix proteins. The functional protein is a tetramer, with the four transmembrane helices forming a proton-permeable channel across the bilayer. Two independently derived models of the M2 channel domain are compared, in order to assess the success of applying molecular modelling approaches to simple membrane proteins.Results: The Cα RSMD between the two models is 1.7 Ä. Both models are composed of a left-handed bundle of helices, with the helices tilted roughly 15° relative to the (presumed) bilayer normal. The two models have similar pore radius profiles, with a pore cavity lined by the Ser31 and Gly34 residues and a pore constriction formed by the ring of His37 residues.Conclusions:Independent studies of M2 have converged on the same structural model for the channel domain. This model is in agreement with solid state NMR data. In particular, both model and NMR data indicate that the M2 helices are tilted relative to the bilayer normal and form a left-handed bundle. Such convergence suggests that, at least for simple membrane proteins, restraints-directed modelling might yield plausible models worthy of further computational and experimental investigation

    Self-assembling dipeptide antibacterial nanostructures with membrane disrupting activity.

    Get PDF
    Peptide-based supramolecular assemblies are a promising class of nanomaterials with important biomedical applications, specifically in drug delivery and tissue regeneration. However, the intrinsic antibacterial capabilities of these assemblies have been largely overlooked. The recent identification of common characteristics shared by antibacterial and self-assembling peptides provides a paradigm shift towards development of antibacterial agents. Here we present the antibacterial activity of self-assembled diphenylalanine, which emerges as the minimal model for antibacterial supramolecular polymers. The diphenylalanine nano-assemblies completely inhibit bacterial growth, trigger upregulation of stress-response regulons, induce substantial disruption to bacterial morphology, and cause membrane permeation and depolarization. We demonstrate the specificity of these membrane interactions and the development of antibacterial materials by integration of the peptide assemblies into tissue scaffolds. This study provides important insights into the significance of the interplay between self-assembly and antimicrobial activity and establishes innovative design principles toward the development of antimicrobial agents and materials

    Discovery of Spiro-Piperidine Inhibitors and Their Modulation of the Dynamics of the M2 Proton Channel from Influenza A Virus

    Get PDF
    Amantadine has been used for decades as an inhibitor of the influenza A virus M2 protein (AM2) in the prophylaxis and treatment of influenza A infections, but its clinical use has been limited by its central nervous system (CNS) side effects as well as emerging drug-resistant strains of the virus. With the goal of searching for new classes of M2 inhibitors, a structure−activity relation study based on 2-[3-azaspiro(5,5)undecanol]-2-imidazoline (BL-1743) was initiated. The first generation BL-1743 series of compounds has been synthesized and tested by two-electrode voltage-clamp (TEV) assays. The most active compound from this library, 3-azaspiro[5,5]undecane hydrochloride (9), showed an IC50 as low as 0.92 ± 0.11 ÎŒM against AM2, more than an order of magnitude more potent than amantadine (IC50 = 16 ÎŒM). 15N and 13C solid-state NMR was employed to determine the effect of compound 9 on the structure and dynamics of the transmembrane domain of AM2 (AM2-TM) in phospholipid bilayers. Compared to amantadine, spiro-piperidine 9 (1) induces a more homogeneous conformation of the peptide, (2) reduces the dynamic disorder of the G34-I35 backbone near the water-filled central cavity of the helical bundle, and (3) influences the dynamics and magnetic environment of more residues within the transmembrane helices. These data suggest that spiro-piperidine 9 binds more extensively with the AM2 channel, thus leading to stronger inhibitory potency

    Computational Design and Elaboration of a De Novo Heterotetrameric α-Helical Protein that Selectively Binds an Emissive Abiological (Porphinato)zinc Chromophore

    Get PDF
    The first example of a computationally de novo designed protein that binds an emissive abiological chromophore is presented, in which a sophisticated level of cofactor discrimination is pre-engineered. This heterotetrameric, C(2)-symmetric bundle, A(His):B(Thr), uniquely binds (5,15-di[(4-carboxymethyleneoxy)phenyl]porphinato)zinc [(DPP)Zn] via histidine coordination and complementary noncovalent interactions. The A(2)B(2) heterotetrameric protein reflects ligand-directed elements of both positive and negative design, including hydrogen bonds to second-shell ligands. Experimental support for the appropriate formulation of [(DPP)Zn:A(His):B(Thr)](2) is provided by UV/visible and circular dichroism spectroscopies, size exclusion chromatography, and analytical ultracentrifugation. Time-resolved transient absorption and fluorescence spectroscopic data reveal classic excited-state singlet and triplet PZn photophysics for the A(His):B(Thr):(DPP)Zn protein (k(fluorescence) = 4 x 10(8) s(-1); tau(triplet) = 5 ms). The A(2)B(2) apoprotein has immeasurably low binding affinities for related [porphinato]metal chromophores that include a (DPP)Fe(III) cofactor and the zinc metal ion hemin derivative [(PPIX)Zn], underscoring the exquisite active-site binding discrimination realized in this computationally designed protein. Importantly, elements of design in the A(His):B(Thr) protein ensure that interactions within the tetra-alpha-helical bundle are such that only the heterotetramer is stable in solution; corresponding homomeric bundles present unfavorable ligand-binding environments and thus preclude protein structural rearrangements that could lead to binding of (porphinato)iron cofactors

    Structure of the amantadine binding site of influenza M2 proton channels in lipid bilayers

    Get PDF
    The M2 protein of influenza A virus is a membrane-spanning tetrameric proton channel targeted by the antiviral drugs amantadine and rimantadine1. Resistance to these drugs has compromised their effectiveness against many influenza strains, including pandemic H1N1. A recent crystal structure of M2(22–46) showed electron densities attributed to a single amantadine in the amino-terminal half of the pore2, indicating a physical occlusion mechanism for inhibition. However, a solution NMR structure of M2(18–60) showed four rimantadines bound to the carboxy-terminal lipid-facing surface of the helices3, suggesting an allosteric mechanism. Here we show by solid-state NMR spectroscopy that two amantadine-binding sites exist in M2 in phospholipid bilayers. The high-affinity site, occupied by a single amantadine, is located in the N-terminal channel lumen, surrounded by residues mutated in amantadine-resistant viruses. Quantification of the protein–amantadine distances resulted in a 0.3 Å-resolution structure of the high-affinity binding site. The second, low-affinity, site was observed on the C-terminal protein surface, but only when the drug reaches high concentrations in the bilayer. The orientation and dynamics of the drug are distinct in the two sites, as shown by 2H NMR. These results indicate that amantadine physically occludes the M2 channel, thus paving the way for developing new antiviral drugs against influenza viruses. The study demonstrates the ability of solid-state NMR to elucidate small-molecule interactions with membrane proteins and determine high-resolution structures of their complexes

    Spectroscopic and metal binding properties of a de novo metalloprotein binding a tetrazinc cluster

    Get PDF
    De novo design provides an attractive approach, which allows one to test and refine the principles guiding metalloproteins in defining the geometry and reactivity of their metal ion cofactors. Although impressive progress has been made in designing proteins that bind transition metal ions including iron–sulfur clusters, the design of tetranuclear clusters with oxygen‐rich environments remains in its infancy. In previous work, we described the design of homotetrameric four‐helix bundles that bind tetra‐Zn2+ clusters. The crystal structures of the helical proteins were in good agreement with the overall design, and the metal‐binding and conformational properties of the helical bundles in solution were consistent with the crystal structures. However, the corresponding apo‐proteins were not fully folded in solution. In this work, we design three peptides, based on the crystal structure of the original bundles. One of the peptides forms tetramers in aqueous solution in the absence of metal ions as assessed by CD and NMR. It also binds Zn2+ in the intended stoichiometry. These studies strongly suggest that the desired structure has been achieved in the apo state, providing evidence that the peptide is able to actively impart the designed geometry to the metal cluster
    • 

    corecore