227 research outputs found
Quantification of the retinal vascular network structure: towards effective monitoring of vessel architecture modulation in diabetic retinopathy
Diabetic retinopathy is the most common diabetic eye disease leading to vision loss. Disturbances have been detected in many aspects of ocular circulation in diabetes. However, hemodynamic and vessel architectural modulation have not been extensively investigated in DR. Therefore, an objective test for the early diagnosis, progression and therapeutic evaluation of DR based on vascular remodeling may aid to identify the individuals at great risk for vision threatening problems. In this paper, we present a methodology to characterize the microvascular network structure in diabetic individuals. Our preliminary results may pave the path towards effective monitoring of vessel architecture modulation in diabetic retinopathy
Real-Time Automatic Segmentation of Optical Coherence Tomography Volume Data of the Macular Region.
Optical coherence tomography (OCT) is a high speed, high resolution and non-invasive imaging modality that enables the capturing of the 3D structure of the retina. The fast and automatic analysis of 3D volume OCT data is crucial taking into account the increased amount of patient-specific 3D imaging data. In this work, we have developed an automatic algorithm, OCTRIMA 3D (OCT Retinal IMage Analysis 3D), that could segment OCT volume data in the macular region fast and accurately. The proposed method is implemented using the shortest-path based graph search, which detects the retinal boundaries by searching the shortest-path between two end nodes using Dijkstra's algorithm. Additional techniques, such as inter-frame flattening, inter-frame search region refinement, masking and biasing were introduced to exploit the spatial dependency between adjacent frames for the reduction of the processing time. Our segmentation algorithm was evaluated by comparing with the manual labelings and three state of the art graph-based segmentation methods. The processing time for the whole OCT volume of 496x644x51 voxels (captured by Spectralis SD-OCT) was 26.15 seconds which is at least a 2-8-fold increase in speed compared to other, similar reference algorithms used in the comparisons. The average unsigned error was about 1 pixel ( approximately 4 microns), which was also lower compared to the reference algorithms. We believe that OCTRIMA 3D is a leap forward towards achieving reliable, real-time analysis of 3D OCT retinal data
Investigation of changes in thickness and reflectivity from layered retinal structures of healthy and diabetic eyes with optical coherence tomography
OCT is usually employed for the measurement of retinal thickness. However, coherent reflected light carries more information characterizing the optical properties of tissue. Therefore, optical property changes may provide further information regarding cellular layers and early damage in ocular diseases. We investigated the possibility of OCT in detecting changes in the optical backscattered signal from layered retinal structures. OCT images were obtained from diabetic patients without retinopathy (DM, n = 38 eyes) or mild diabetic retinopathy (MDR, n = 43 eyes) and normal healthy subjects (n = 74 eyes). The thickness and reflectivity of various layered structures were assessed using a custom-built algorithm. In addition, we evaluated the usefulness of quantifying the reflectivity of layered structures in the detection of retinal damage. Generalized estimating equations considering within-subject inter-eye relations were used to test for differences between the groups. A modified p value of <0.001 was considered statistically significant. Receiver operating characteristic (ROC) curves were constructed to describe the ability of each parameter to discriminate between the eyes of DM, MDR and healthy eyes. Thickness values of the GCL + IPL and OPL showed a significant decrease in the MDR eyes compared to controls. Significant decreases of total reflectance average values were observed in all layers in the MDR eyes compared with controls. The highest AUROC values estimated for the total reflectance were observed for the GCL + IPL, OPL and OS when comparing MDR eyes with controls. Total reflectance showed a better discriminating power between the MDR eyes and healthy eyes compared to thickness values. Our results suggest that the optical properties of the intraretinal layers may provide useful information to differentiate pathological from healthy eyes. Further research is warranted to determine how this approach may be used to improve diagnosis of early retinal neurodegeneration
Investigating Tissue Optical Properties and Texture Descriptors of the Retina in Patients with Multiple Sclerosis
PURPOSE: To assess the differences in texture descriptors and optical properties of retinal tissue layers in patients with multiple sclerosis (MS) and to evaluate their usefulness in the detection of neurodegenerative changes using optical coherence tomography (OCT) image segmentation. PATIENTS AND METHODS: 38 patients with MS were examined using Stratus OCT. The raw macular OCT data were exported and processed using OCTRIMA software. The enrolled eyes were divided into two groups, based on the presence of optic neuritis (ON) in the history (MSON+ group, n = 36 and MSON- group, n = 31). Data of 29 eyes of 24 healthy subjects (H) were used as controls. A total of seven intraretinal layers were segmented and thickness as well as optical parameters such as contrast, fractal dimension, layer index and total reflectance were measured. Mixed-model ANOVA analysis was used for statistical comparisons. RESULTS: Significant thinning of the retinal nerve fiber layer (RNFL), ganglion cell/inner plexiform layer complex (GCL+IPL) and ganglion cell complex (GCC, RNFL+GCL+IPL) was observed between study groups in all comparisons. Significant difference was found in contrast in the RNFL, GCL+IPL, GCC, inner nuclear layer (INL) and outer plexiform layer when comparing MSON+ to the other groups. Higher fractal dimension values were observed in GCL+IPL and INL layers when comparing H vs. MSON+ groups. A significant difference was found in layer index in the RNFL, GCL+IPL and GCC layers in all comparisons. A significant difference was observed in total reflectance in the RNFL, GCL+IPL and GCC layers between the three examination groups. CONCLUSION: Texture and optical properties of the retinal tissue undergo pronounced changes in MS even without optic neuritis. Our results may help to further improve the diagnostic efficacy of OCT in MS and neurodegeneration
Fractal-based analysis of optical coherence tomography data to quantify retinal tissue damage
BACKGROUND: The sensitivity of Optical Coherence Tomography (OCT) images to identify retinal tissue morphology characterized by early neural loss from normal healthy eyes is tested by calculating structural information and fractal dimension. OCT data from 74 healthy eyes and 43 eyes with type 1 diabetes mellitus with mild diabetic retinopathy (MDR) on biomicroscopy was analyzed using a custom-built algorithm (OCTRIMA) to measure locally the intraretinal layer thickness. A power spectrum method was used to calculate the fractal dimension in intraretinal regions of interest identified in the images. ANOVA followed by Newman-Keuls post-hoc analyses were used to test for differences between pathological and normal groups. A modified p value of <0.001 was considered statistically significant. Receiver operating characteristic (ROC) curves were constructed to describe the ability of each parameter to discriminate between eyes of pathological patients and normal healthy eyes. RESULTS: Fractal dimension was higher for all the layers (except the GCL + IPL and INL) in MDR eyes compared to normal healthy eyes. When comparing MDR with normal healthy eyes, the highest AUROC values estimated for the fractal dimension were observed for GCL + IPL and INL. The maximum discrimination value for fractal dimension of 0.96 (standard error =0.025) for the GCL + IPL complex was obtained at a FD <= 1.66 (cut off point, asymptotic 95% Confidence Interval: lower-upper bound = 0.905-1.002). Moreover, the highest AUROC values estimated for the thickness measurements were observed for the OPL, GCL + IPL and OS. Particularly, when comparing MDR eyes with control healthy eyes, we found that the fractal dimension of the GCL + IPL complex was significantly better at diagnosing early DR, compared to the standard thickness measurement. CONCLUSIONS: Our results suggest that the GCL + IPL complex, OPL and OS are more susceptible to initial damage when comparing MDR with control healthy eyes. Fractal analysis provided a better sensitivity, offering a potential diagnostic predictor for detecting early neurodegeneration in the retina
In Vivo Evaluation of Retinal Neurodegeneration in Patients with Multiple Sclerosis
To evaluate macular morphology in the eyes of patients with multiple sclerosis (MS) with or without optic neuritis (ON) in previous history.Optical coherence tomography (OCT) examination was performed in thirty-nine patients with MS and in thirty-three healthy subjects. The raw macular OCT data were processed using OCTRIMA software. The circumpapillary retinal nerve fiber layer (RNFL) thickness and the weighted mean thickness of the total retina and 6 intraretinal layers were obtained for each eye. The eyes of MS patients were divided into a group of 39 ON-affected eyes, and into a group of 34 eyes with no history of ON for the statistical analyses. Receiver operating characteristic (ROC) curves were constructed to determine which parameter can discriminate best between the non-affected group and controls.The circumpapillary RNFL thickness was significantly decreased in the non-affected eyes compared to controls group only in the temporal quadrant (p = 0.001) while it was decreased in the affected eyes of the MS patients in all quadrants compared to the non-affected eyes (p<0.05 in each comparison). The thickness of the total retina, RNFL, ganglion cell layer and inner plexiform layer complex (GCL+IPL) and ganglion cell complex (GCC, comprising the RNFL and GCL+IPL) in the macula was significantly decreased in the non-affected eyes compared to controls (p<0.05 for each comparison) and in the ON-affected eyes compared to the non-affected eyes (p<0.001 for each comparison). The largest area under the ROC curve (0.892) was obtained for the weighted mean thickness of the GCC. The EDSS score showed the strongest correlation with the GCL+IPL and GCC thickness (p = 0.007, r = 0.43 for both variables).Thinning of the inner retinal layers is present in eyes of MS patients regardless of previous ON. Macular OCT image segmentation might provide a better insight into the pathology of neuronal loss and could therefore play an important role in the diagnosis and follow-up of patients with MS
Automated classifiers for early detection and diagnosis of retinopathy in diabetic eyes
BACKGROUND: Artificial neural networks (ANNs) have been used to classify eye diseases, such as diabetic retinopathy (DR) and glaucoma. DR is the leading cause of blindness in working-age adults in the developed world. The implementation of DR diagnostic routines could be feasibly improved by the integration of structural and optical property test measurements of the retinal structure that provide important and complementary information for reaching a diagnosis. In this study, we evaluate the capability of several structural and optical features (thickness, total reflectance and fractal dimension) of various intraretinal layers extracted from optical coherence tomography images to train a Bayesian ANN to discriminate between healthy and diabetic eyes with and with no mild retinopathy. RESULTS: When exploring the probability as to whether the subject's eye was healthy (diagnostic condition, Test 1), we found that the structural and optical property features of the outer plexiform layer (OPL) and the complex formed by the ganglion cell and inner plexiform layers (GCL + IPL) provided the highest probability (positive predictive value (PPV) of 91% and 89%, respectively) for the proportion of patients with positive test results (healthy condition) who were correctly diagnosed (Test 1). The true negative, TP and PPV values remained stable despite the different sizes of training data sets (Test 2). The sensitivity, specificity and PPV were greater or close to 0.70 for the retinal nerve fiber layer's features, photoreceptor outer segments and retinal pigment epithelium when 23 diabetic eyes with mild retinopathy were mixed with 38 diabetic eyes with no retinopathy (Test 3). CONCLUSIONS: A Bayesian ANN trained on structural and optical features from optical coherence tomography data can successfully discriminate between healthy and diabetic eyes with and with no retinopathy. The fractal dimension of the OPL and the GCL + IPL complex predicted by the Bayesian radial basis function network provides better diagnostic utility to classify diabetic eyes with mild retinopathy. Moreover, the thickness and fractal dimension parameters of the retinal nerve fiber layer, photoreceptor outer segments and retinal pigment epithelium show promise for the diagnostic classification between diabetic eyes with and with no mild retinopathy
- …