10 research outputs found

    Human adaptations to multiday saturation on NASA NEEMO

    Get PDF
    Human adaptation to extreme environments has been explored for over a century to understand human psychology, integrated physiology, comparative pathologies, and exploratory potential. It has been demonstrated that these environments can provide multiple external stimuli and stressors, which are sufficient to disrupt internal homeostasis and induce adaptation processes. Multiday hyperbaric and/or saturated (HBS) environments represent the most understudied of environmental extremes due to inherent experimental, analytical, technical, temporal, and safety limitations. National Aeronautic Space Agency (NASA) Extreme Environment Mission Operation (NEEMO) is a space-flight analog mission conducted within Florida International University's Aquarius Undersea Research Laboratory (AURL), the only existing operational and habitable undersea saturated environment. To investigate human objective and subjective adaptations to multiday HBS, we evaluated aquanauts living at saturation for 9-10 days via NASA NEEMO 22 and 23, across psychologic, cardiac, respiratory, autonomic, thermic, hemodynamic, sleep, and body composition parameters. We found that aquanauts exposed to saturation over 9-10 days experienced intrapersonal physical and mental burden, sustained good mood and work satisfaction, decreased heart and respiratory rates, increased parasympathetic and reduced sympathetic modulation, lower cerebral blood flow velocity, intact cerebral autoregulation and maintenance of baroreflex functionality, as well as losses in systemic bodyweight and adipose tissue. Together, these findings illustrate novel insights into human adaptation across multiple body systems in response to multiday hyperbaric saturation

    Distinct Nrf2 Signaling Thresholds Mediate Lung Tumor Initiation and Progression

    No full text
    NRF2 is a redox-responsive transcription factor the directs the antioxidant program and several critical metabolic processes. Mutations in NRF2 or its negative regulator KEAP1 occur in up to one third of non-small cell lung cancers (NSCLCs) and are often associated with resistance to therapy and poor outcomes. In the present studies, murine alleles of the Keap1 and Nrf2 mutations found in human NSCLC were developed and I comprehensively investigated their impact on tumor initiation and progression. I observed that chronic Nrf2 stabilization by Keap1 loss-of-function or Nrf2 activating mutation was not sufficient to cause lung tumor initiation, even when p53 or Lkb1 were deleted. In the context of oncogenic KrasG12D/+, constitutive Nrf2 activation via Keap1/ Nrf2 mutation promoted lung tumor initiation and early progression of hyperplasia to low-grade tumors. When KrasG12D/+ was combined with p53 deletion, I observed an impairment in progression to advanced-grade tumors with Keap1R554Q/R554Q mutation, which caused the most robust Nrf2 activation. I discovered that this progression block was reversed by NRF2 deletion, indicating that the effects of Keap1 mutation in this model were Nrf2-dependent. I also interrogated the effect of Nrf2 hyperactivation in another mutational background, the KrasG12D/+; Lkb1fl/fl model. Interestingly, Nrf2D29H/+ mutation, which was the most activating towards Nrf2 in this model, blocked progression to high-grade tumors, suggesting that excess levels of Nrf2 are detrimental to lung tumor progression. Finally, I observed that NRF2 overexpression in KEAP1 mutant human NSCLC cell lines impaired cell proliferation, viability, and anchorage-independent colony formation. Collectively, these results establish the context-dependence and activity threshold for NRF2 during the lung tumorigenic process

    Dissecting the Crosstalk between NRF2 Signaling and Metabolic Processes in Cancer

    No full text
    The transcription factor NRF2 (nuclear factor-erythroid 2 p45-related factor 2 or NFE2L2) plays a critical role in response to cellular stress. Following an oxidative insult, NRF2 orchestrates an antioxidant program, leading to increased glutathione levels and decreased reactive oxygen species (ROS). Mounting evidence now implicates the ability of NRF2 to modulate metabolic processes, particularly those at the interface between antioxidant processes and cellular proliferation. Notably, NRF2 regulates the pentose phosphate pathway, NADPH production, glutaminolysis, lipid and amino acid metabolism, many of which are hijacked by cancer cells to promote proliferation and survival. Moreover, deregulation of metabolic processes in both normal and cancer-based physiology can stabilize NRF2. We will discuss how perturbation of metabolic pathways, including the tricarboxylic acid (TCA) cycle, glycolysis, and autophagy can lead to NRF2 stabilization, and how NRF2-regulated metabolism helps cells deal with these metabolic stresses. Finally, we will discuss how the negative regulator of NRF2, Kelch-like ECH-associated protein 1 (KEAP1), may play a role in metabolism through NRF2 transcription-independent mechanisms. Collectively, this review will address the interplay between the NRF2/KEAP1 complex and metabolic processes

    A Glutamate Scavenging Protocol Combined with Deanna Protocol in SOD1-G93A Mouse Model of ALS

    No full text
    Amyotrophic lateral sclerosis (ALS) is a progressive disease of neuronal degeneration in the motor cortex, brainstem, and spinal cord, resulting in impaired motor function and premature demise as a result of insufficient respiratory drive. ALS is associated with dysfunctions in neurons, neuroglia, muscle cells, energy metabolism, and glutamate balance. Currently, there is not a widely accepted, effective treatment for this condition. Prior work from our lab has demonstrated the efficacy of supplemental nutrition with the Deanna Protocol (DP). In the present study, we tested the effects of three different treatments in a mouse model of ALS. These treatments were the DP alone, a glutamate scavenging protocol (GSP) alone, and a combination of the two treatments. Outcome measures included body weight, food intake, behavioral assessments, neurological score, and lifespan. Compared to the control group, DP had a significantly slower decline in neurological score, strength, endurance, and coordination, with a trend toward increased lifespan despite a greater loss of weight. GSP had a significantly slower decline in neurological score, strength, endurance, and coordination, with a trend toward increased lifespan. DP+GSP had a significantly slower decline in neurological score with a trend toward increased lifespan, despite a greater loss of weight. While each of the treatment groups fared better than the control group, the combination of the DP+GSP was not better than either of the individual treatments. We conclude that the beneficial effects of the DP and the GSP in this ALS mouse model are distinct, and appear to offer no additional benefit when combined

    Ketone Bodies Attenuate Wasting in Models of Atrophy

    No full text
    Background: Cancer Anorexia Cachexia Syndrome (CACS) is a distinct atrophy disease negatively influencing multiple aspects of clinical care and patient quality of life. Although it directly causes 20% of all cancer-related deaths, there are currently no model systems that encompass the entire multifaceted syndrome, nor are there any effective therapeutic treatments. Methods: A novel model of systemic metastasis was evaluated for the comprehensive CACS (metastasis, skeletal muscle and adipose tissue wasting, inflammation, anorexia, anemia, elevated protein breakdown, hypoalbuminemia, and metabolic derangement) in both males and females. Ex vivo skeletal muscle analysis was utilized to determine ubiquitin proteasome degradation pathway activation. A novel ketone diester (R/S 1,3-Butanediol Acetoacetate Diester) was assessed in multifaceted catabolic environments to determine anti-atrophy efficacy. Results: Here, we show that the VM-M3 mouse model of systemic metastasis demonstrates a novel, immunocompetent, logistically feasible, repeatable phenotype with progressive tumor growth, spontaneous metastatic spread, and the full multifaceted CACS with sex dimorphisms across tissue wasting. We also demonstrate that the ubiquitin proteasome degradation pathway was significantly upregulated in association with reduced insulin-like growth factor-1/insulin and increased FOXO3a activation, but not tumor necrosis factor-α-induced nuclear factor-kappa B activation, driving skeletal muscle atrophy. Additionally, we show that R/S 1,3-Butanediol Acetoacetate Diester administration shifted systemic metabolism, attenuated tumor burden indices, reduced atrophy/catabolism and mitigated comorbid symptoms in both CACS and cancer-independent atrophy environments. Conclusion: Our findings suggest the ketone diester attenuates multifactorial CACS skeletal muscle atrophy and inflammation-induced catabolism, demonstrating anti-catabolic effects of ketone bodies in multifactorial atrophy

    Ketone Bodies Attenuate Wasting in Models of Atrophy

    No full text
    Background: Cancer Anorexia Cachexia Syndrome (CACS) is a distinct atrophy disease negatively influencing multiple aspects of clinical care and patient quality of life. Although it directly causes 20% of all cancer-related deaths, there are currently no model systems that encompass the entire multifaceted syndrome, nor are there any effective therapeutic treatments. Methods: A novel model of systemic metastasis was evaluated for the comprehensive CACS (metastasis, skeletal muscle and adipose tissue wasting, inflammation, anorexia, anemia, elevated protein breakdown, hypoalbuminemia, and metabolic derangement) in both males and females. Ex vivo skeletal muscle analysis was utilized to determine ubiquitin proteasome degradation pathway activation. A novel ketone diester (R/S 1,3-Butanediol Acetoacetate Diester) was assessed in multifaceted catabolic environments to determine anti-atrophy efficacy. Results: Here, we show that the VM-M3 mouse model of systemic metastasis demonstrates a novel, immunocompetent, logistically feasible, repeatable phenotype with progressive tumor growth, spontaneous metastatic spread, and the full multifaceted CACS with sex dimorphisms across tissue wasting. We also demonstrate that the ubiquitin proteasome degradation pathway was significantly upregulated in association with reduced insulin-like growth factor-1/insulin and increased FOXO3a activation, but not tumor necrosis factor-α-induced nuclear factor-kappa B activation, driving skeletal muscle atrophy. Additionally, we show that R/S 1,3-Butanediol Acetoacetate Diester administration shifted systemic metabolism, attenuated tumor burden indices, reduced atrophy/catabolism and mitigated comorbid symptoms in both CACS and cancer-independent atrophy environments. Conclusion: Our findings suggest the ketone diester attenuates multifactorial CACS skeletal muscle atrophy and inflammation-induced catabolism, demonstrating anti-catabolic effects of ketone bodies in multifactorial atrophy

    Ketone Bodies Attenuate Wasting in Models of Atrophy

    No full text
    Background: Cancer Anorexia Cachexia Syndrome (CACS) is a distinct atrophy disease negatively influencing multiple aspects of clinical care and patient quality of life. Although it directly causes 20% of all cancer-related deaths, there are currently no model systems that encompass the entire multifaceted syndrome, nor are there any effective therapeutic treatments. Methods: A novel model of systemic metastasis was evaluated for the comprehensive CACS (metastasis, skeletal muscle and adipose tissue wasting, inflammation, anorexia, anemia, elevated protein breakdown, hypoalbuminemia, and metabolic derangement) in both males and females. Ex vivo skeletal muscle analysis was utilized to determine ubiquitin proteasome degradation pathway activation. A novel ketone diester (R/S 1,3-Butanediol Acetoacetate Diester) was assessed in multifaceted catabolic environments to determine anti-atrophy efficacy. Results: Here, we show that the VM-M3 mouse model of systemic metastasis demonstrates a novel, immunocompetent, logistically feasible, repeatable phenotype with progressive tumor growth, spontaneous metastatic spread, and the full multifaceted CACS with sex dimorphisms across tissue wasting. We also demonstrate that the ubiquitin proteasome degradation pathway was significantly upregulated in association with reduced insulin-like growth factor-1/insulin and increased FOXO3a activation, but not tumor necrosis factor-α-induced nuclear factor-kappa B activation, driving skeletal muscle atrophy. Additionally, we show that R/S 1,3-Butanediol Acetoacetate Diester administration shifted systemic metabolism, attenuated tumor burden indices, reduced atrophy/catabolism and mitigated comorbid symptoms in both CACS and cancer-independent atrophy environments. Conclusion: Our findings suggest the ketone diester attenuates multifactorial CACS skeletal muscle atrophy and inflammation-induced catabolism, demonstrating anti-catabolic effects of ketone bodies in multifactorial atrophy

    Delaying Latency to Hyperbaric Oxygen-induced CNS Oxygen Toxicity Seizures by Combinations of Exogenous Ketone Supplements

    No full text
    Central nervous system oxygen toxicity (CNS-OT) manifests as tonic-clonic seizures and is a limitation of hyperbaric oxygen therapy (HBOT), as well as of recreational and technical diving associated with elevated partial pressure of oxygen. A previous study showed that ketone ester (1,3-butanediol acetoacetate diester, KE) administration delayed latency to seizures (LS) in 3-month-old Sprague-Dawley (SD) rats. This study explores the effect of exogenous ketone supplements in additional dosages and formulations on CNS-OT seizures in 18 months old SD rats, an age group correlating to human middle age. Ketogenic agents were given orally 60 min prior to exposure to hyperbaric oxygen and included control (water), KE (10 g/kg), KE/2 (KE 5 g/kg + water 5 g/kg), KE + medium-chain triglycerides (KE 5 g/kg + MCT 5 g/kg), and ketone salt (Na+/K+βHB, KS) + MCT (KS 5 g/kg + MCT 5 g/kg). Rats were exposed to 100% oxygen at 5 atmospheres absolute (ATA). Upon seizure presentation (tonic-clonic movements) experiments were immediately terminated and blood was tested for glucose and D-beta-hydroxybutyrate (D-βHB) levels. While blood D-βHB levels were significantly elevated post-dive in all treatment groups, LS was significantly delayed only in KE (P = 0.0003), KE/2 (P = 0.023), and KE + MCT (P = 0.028) groups. In these groups, the severity of seizures appeared to be reduced, although these changes were significant only in KE-treated animals (P = 0.015). Acetoacetate (AcAc) levels were also significantly elevated in KE-treated animals. The LS in 18-month-old rats was delayed by 179% in KE, 219% in KE + MCT, and 55% in KE/2 groups, while only by 29% in KS + MCT. In conclusion, KE supplementation given alone and in combination with MCT elevated both βHB and AcAc, and delayed CNS-OT seizures

    Delaying Latency to Hyperbaric Oxygen-induced CNS Oxygen Toxicity Seizures by Combinations of Exogenous Ketone Supplements

    No full text
    Central nervous system oxygen toxicity (CNS-OT) manifests as tonic-clonic seizures and is a limitation of hyperbaric oxygen therapy (HBOT), as well as of recreational and technical diving associated with elevated partial pressure of oxygen. A previous study showed that ketone ester (1,3-butanediol acetoacetate diester, KE) administration delayed latency to seizures (LS) in 3-month-old Sprague-Dawley (SD) rats. This study explores the effect of exogenous ketone supplements in additional dosages and formulations on CNS-OT seizures in 18 months old SD rats, an age group correlating to human middle age. Ketogenic agents were given orally 60 min prior to exposure to hyperbaric oxygen and included control (water), KE (10 g/kg), KE/2 (KE 5 g/kg + water 5 g/kg), KE + medium-chain triglycerides (KE 5 g/kg + MCT 5 g/kg), and ketone salt (Na+/K+βHB, KS) + MCT (KS 5 g/kg + MCT 5 g/kg). Rats were exposed to 100% oxygen at 5 atmospheres absolute (ATA). Upon seizure presentation (tonic-clonic movements) experiments were immediately terminated and blood was tested for glucose and D-beta-hydroxybutyrate (D-βHB) levels. While blood D-βHB levels were significantly elevated post-dive in all treatment groups, LS was significantly delayed only in KE (P = 0.0003), KE/2 (P = 0.023), and KE + MCT (P = 0.028) groups. In these groups, the severity of seizures appeared to be reduced, although these changes were significant only in KE-treated animals (P = 0.015). Acetoacetate (AcAc) levels were also significantly elevated in KE-treated animals. The LS in 18-month-old rats was delayed by 179% in KE, 219% in KE + MCT, and 55% in KE/2 groups, while only by 29% in KS + MCT. In conclusion, KE supplementation given alone and in combination with MCT elevated both βHB and AcAc, and delayed CNS-OT seizures

    Imaging the master regulator of the antioxidant response in non-small cell lung cancer with positron emission tomography

    No full text
    Mutations in the NRF2-KEAP1 pathway are common in non-small cell lung cancer (NSCLC) and confer broad-spectrum therapeutic resistance, leading to poor outcomes. The cystine/glutamate antiporter, system xc-, is one of the &gt;200 cytoprotective proteins controlled by NRF2, which can be non-invasively imaged by (S)-4-(3-18F-fluoropropyl)-l-glutamate ([18F]FSPG) positron emission tomography (PET). Through genetic and pharmacologic manipulation, we show that [18F]FSPG provides a sensitive and specific marker of NRF2 activation in advanced preclinical models of NSCLC. We validate imaging readouts with metabolomic measurements of system xc- activity and their coupling to intracellular glutathione concentration. A redox gene signature was measured in patients from the TRACERx 421 cohort, suggesting an opportunity for patient stratification prior to imaging. Furthermore, we reveal that system xc- is a metabolic vulnerability that can be therapeutically targeted for sustained tumour growth suppression in aggressive NSCLC. Our results establish [18F]FSPG as predictive marker of therapy resistance in NSCLC and provide the basis for the clinical evaluation of both imaging and therapeutic agents that target this important antioxidant pathway. </p
    corecore