856 research outputs found

    Distances on the tropical line determined by two points

    Get PDF
    Let p,qRnp',q'\in R^n. Write pqp'\sim q' if pqp'-q' is a multiple of (1,,1)(1,\ldots,1). Two different points pp and qq in Rn/R^n/\sim uniquely determine a tropical line L(p,q)L(p,q), passing through them, and stable under small perturbations. This line is a balanced unrooted semi--labeled tree on nn leaves. It is also a metric graph. If some representatives pp' and qq' of pp and qq are the first and second columns of some real normal idempotent order nn matrix AA, we prove that the tree L(p,q)L(p,q) is described by a matrix FF, easily obtained from AA. We also prove that L(p,q)L(p,q) is caterpillar. We prove that every vertex in L(p,q)L(p,q) belongs to the tropical linear segment joining pp and qq. A vertex, denoted pqpq, closest (w.r.t tropical distance) to pp exists in L(p,q)L(p,q). Same for qq. The distances between pairs of adjacent vertices in L(p,q)L(p,q) and the distances \dd(p,pq), \dd(qp,q) and \dd(p,q) are certain entries of the matrix F|F|. In addition, if pp and qq are generic, then the tree L(p,q)L(p,q) is trivalent. The entries of FF are differences (i.e., sum of principal diagonal minus sum of secondary diagonal) of order 2 minors of the first two columns of AA.Comment: New corrected version. 31 pages and 9 figures. The main result is theorem 13. This is a generalization of theorem 7 to arbitrary n. Theorem 7 was obtained with A. Jim\'enez; see Arxiv 1205.416

    Tropical conics for the layman

    Get PDF
    We present a simple and elementary procedure to sketch the tropical conic given by a degree--two homogeneous tropical polynomial. These conics are trees of a very particular kind. Given such a tree, we explain how to compute a defining polynomial. Finally, we characterize those degree--two tropical polynomials which are reducible and factorize them. We show that there exist irreducible degree--two tropical polynomials giving rise to pairs of tropical lines.Comment: 19 pages, 4 figures. Major rewriting of formerly entitled paper "Metric invariants of tropical conics and factorization of degree--two homogeneous tropical polynomials in three variables". To appear in Idempotent and tropical mathematics and problems of mathematical physics (vol. II), G. Litvinov, V. Maslov, S. Sergeev (eds.), Proceedings Workshop, Moscow, 200

    Grupos sociales y biografía colectiva en la historia del virreinato del Perú: una aproximación

    Get PDF
    Este artículo plantea, desde la perspectiva de la historia de la historiografía, un análisis en torno a los estudios sobre grupos sociales en el ámbito geográfico de lo que fue el virreinato del Perú. En una primera parte se estudian cuestiones metodológicas y terminológicas, en particular con respecto al concepto de prosopografía, destacando cómo ésta ha constituido uno entre otros recursos metodológicos empleados por los historiadores para el estudio de los grupos sociales. A continuación se alude a las principales obras que han analizado los grupos sociales en el Perú virreinal, estudiando principalmente a conquistadores, encomenderos y otros miembros de las capas sociales altas. En cuanto al siglo XVIII se hace especial referencia a las investigaciones en torno a los agentes de la administración, a los comerciantes y también a los sectores populares
    corecore