67 research outputs found

    Cognitive style modulates semantic interference effects: evidence from field dependency

    Get PDF
    The so-called semantic interference effect is a delay in selecting an appropriate target word in a context where semantic neighbours are strongly activated. Semantic interference effect has been described to vary from one individual to another. These differences in the susceptibility to semantic interference may be due to either differences in the ability to engage in lexical-specific selection mechanisms or to differences in the ability to engage more general, top-down inhibition mechanisms which suppress unwanted responses based on task-demands. However, semantic interference may also be modulated by an individual’s disposition to separate relevant perceptual signals from noise, such as a field-independent (FI) or a field-dependent (FD) cognitive style. We investigated the relationship between semantic interference in picture naming and in an STM probe task and both the ability to inhibit responses top-down (measured through a Stroop task) and a FI/FD cognitive style measured through the embedded figures test (EFT). We found a significant relationship between semantic interference in picture naming and cognitive style—with semantic interference increasing as a function of the degree of field dependence—but no associations with the semantic probe and the Stroop task. Our results suggest that semantic interference can be modulated by cognitive style, but not by differences in the ability to engage top-down control mechanisms, at least as measured by the Stroop task

    Association between two distinct executive tasks in schizophrenia: a functional transcranial Doppler sonography study

    Get PDF
    BACKGROUND: Schizophrenia is a severe mental disorder involving impairments in executive functioning, which are important cognitive processes that can be assessed by planning tasks such as the Stockings of Cambridge (SOC), and tasks of rule learning/abstraction such as the Wisconsin Card Sorting Test (WCST). We undertook this study to investigate the association between performance during separate phases of SOC and WCST, including mean cerebral blood flow velocity (MFV) measurements in chronic schizophrenia. METHODS: Functional transcranial Doppler sonography (fTCD) was used to assess bilateral MFV changes in the middle (MCA) and anterior (ACA) cerebral arteries. Twenty-two patients with chronic schizophrenia and 20 healthy subjects with similar sociodemographic characteristics performed SOC and WCST during fTCD measurements of the MCA and the ACA. The SOC was varied in terms of easy and difficult problems, and also in terms of separate phases, namely mental planning and movement execution. The WCST performance was assessed separately for maintaining set and set shifting. This allowed us to examine the impact of problem difficulty and the impact of separate phases of a planning task on distinct intervals of WCST. Simultaneous registration of MFV was carried out to investigate the linkage of brain perfusion during the tasks. RESULTS: In patients, slowing of movement execution during easy problems (SOC) was associated with slowing during maintaining set (WCST) (P < 0.01). In healthy subjects, faster planning and movement execution during predominantly difficult problems were associated with increased performance of WCST during set shifting (P < 0.01). In the MCA, patients showed a significant and positive correlation of MFV between movement execution and WCST (P < 0.01). CONCLUSION: The results of this study demonstrate performance and brain perfusion abnormalities in the association pattern of two different tasks of executive functioning in schizophrenia, and they support the notion that executive functions have a pathological functional correlate predominantly in the lateral hemispheres of the brain. This study also underpins the scientific potential of fTCD in assessing brain perfusion in patients with schizophrenia

    Anterior Medial Prefrontal Cortex Exhibits Activation during Task Preparation but Deactivation during Task Execution

    Get PDF
    BACKGROUND: The anterior prefrontal cortex (PFC) exhibits activation during some cognitive tasks, including episodic memory, reasoning, attention, multitasking, task sets, decision making, mentalizing, and processing of self-referenced information. However, the medial part of anterior PFC is part of the default mode network (DMN), which shows deactivation during various goal-directed cognitive tasks compared to a resting baseline. One possible factor for this pattern is that activity in the anterior medial PFC (MPFC) is affected by dynamic allocation of attentional resources depending on task demands. We investigated this possibility using an event related fMRI with a face working memory task. METHODOLOGY/PRINCIPAL FINDINGS: Sixteen students participated in a single fMRI session. They were asked to form a task set to remember the faces (Face memory condition) or to ignore them (No face memory condition), then they were given 6 seconds of preparation period before the onset of the face stimuli. During this 6-second period, four single digits were presented one at a time at the center of the display, and participants were asked to add them and to remember the final answer. When participants formed a task set to remember faces, the anterior MPFC exhibited activation during a task preparation period but deactivation during a task execution period within a single trial. CONCLUSIONS/SIGNIFICANCE: The results suggest that the anterior MPFC plays a role in task set formation but is not involved in execution of the face working memory task. Therefore, when attentional resources are allocated to other brain regions during task execution, the anterior MPFC shows deactivation. The results suggest that activation and deactivation in the anterior MPFC are affected by dynamic allocation of processing resources across different phases of processing

    Subcortical volumes across the lifespan: Data from 18,605 healthy individuals aged 3-90 years

    Get PDF
    Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to examine age-related trajectories inferred from cross-sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3-90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter-individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age-related morphometric patterns

    Exploration of Shared Genetic Architecture Between Subcortical Brain Volumes and Anorexia Nervosa

    Get PDF
    In MRI scans of patients with anorexia nervosa (AN), reductions in brain volume are often apparent. However, it is unknown whether such brain abnormalities are influenced by genetic determinants that partially overlap with those underlying AN. Here, we used a battery of methods (LD score regression, genetic risk scores, sign test, SNP effect concordance analysis, and Mendelian randomization) to investigate the genetic covariation between subcortical brain volumes and risk for AN based on summary measures retrieved from genome-wide association studies of regional brain volumes (ENIGMA consortium, n = 13,170) and genetic risk for AN (PGC-ED consortium, n = 14,477). Genetic correlations ranged from − 0.10 to 0.23 (all p > 0.05). There were some signs of an inverse concordance between greater thalamus volume and risk for AN (permuted p = 0.009, 95% CI: [0.005, 0.017]). A genetic variant in the vicinity of ZW10, a gene involved in cell division, and neurotransmitter and immune system relevant genes, in particular DRD2, was significantly associated with AN only after conditioning on its association with caudate volume (pFDR = 0.025). Another genetic variant linked to LRRC4C, important in axonal and synaptic development, reached significance after conditioning on hippocampal volume (pFDR = 0.021). In this comprehensive set of analyses and based on the largest available sample sizes to date, there was weak evidence for associations between risk for AN and risk for abnormal subcortical brain volumes at a global level (that is, common variant genetic architecture), but suggestive evidence for effects of single genetic markers. Highly powered multimodal brain- and disorder-related genome-wide studies are needed to further dissect the shared genetic influences on brain structure and risk for AN

    Dose response of the 16p11.2 distal copy number variant on intracranial volume and basal ganglia

    Get PDF
    Carriers of large recurrent copy number variants (CNVs) have a higher risk of developing neurodevelopmental disorders. The 16p11.2 distal CNV predisposes carriers to e.g., autism spectrum disorder and schizophrenia. We compared subcortical brain volumes of 12 16p11.2 distal deletion and 12 duplication carriers to 6882 non-carriers from the large-scale brain Magnetic Resonance Imaging collaboration, ENIGMA-CNV. After stringent CNV calling procedures, and standardized FreeSurfer image analysis, we found negative dose-response associations with copy number on intracranial volume and on regional caudate, pallidum and putamen volumes (β = −0.71 to −1.37; P < 0.0005). In an independent sample, consistent results were obtained, with significant effects in the pallidum (β = −0.95, P = 0.0042). The two data sets combined showed significant negative dose-response for the accumbens, caudate, pallidum, putamen and ICV (P = 0.0032, 8.9 × 10⁻⁶, 1.7 × 10⁻⁹, 3.5 × 10⁻¹² and 1.0 × 10⁻⁴, respectively). Full scale IQ was lower in both deletion and duplication carriers compared to non-carriers. This is the first brain MRI study of the impact of the 16p11.2 distal CNV, and we demonstrate a specific effect on subcortical brain structures, suggesting a neuropathological pattern underlying the neurodevelopmental syndromes
    corecore