14 research outputs found

    Temporal variations of vegetative features, sex ratios and reproductive phenology in a Dictyota dichotoma (Dictyotales, Phaeophyceae) population of Argentina

    Get PDF
    This paper addresses the phenology of a Dictyota dichotoma population from the North Patagonian coasts of Argentina. The morphology of the individuals was characterized, and analyses of the temporal variations of vegetative features, diploid and haploid life cycle generations and sex ratios are provided. Individuals, represented by growing sporophytes and gametophytes, occurred simultaneously throughout the year. Morphological variables showed temporal variation, except the width and height of medullary cells, which did not vary between seasons. All vegetative variables were significantly correlated with daylength. Besides, frond length, frond dry mass and apical and basal branching angles were significantly correlated with seawater temperatures. Vegetative thalli were less abundant than haploid and diploid thalli. Sporophytes were less abundant than male and female gametophytes. Male gametophytes dominated in May, August, October and January, and female gametophytes were more abundant in September, November, December, February and March. The formation of female gametangia showed a significant correlation with daylength, and the highest number of gametangia was registered in spring. In general, the male/female sex ratio varied between 1:2 and 1:1. Apical regions were more fertile than basal regions. Our data about frequency in the formation of reproductive structures and male/female ratios are the first recorded in the Dictyota genus and thus could not be compared with populations from other regions of the world. Significant morphological variation was observed in thalli of both life cycle generations, regarding length and dry mass, number of primary branches and branching basal angle. In general, all variables analyzed varied seasonally except cortical cell width.Fil: Gauna, Maria Cecilia. Universidad Nacional del Sur. Departamento de BiologĂ­a, BioquĂ­mica y Farmacia. Laboratorio de EcologĂ­a AcuĂĄtica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico BahĂ­a Blanca. Instituto Argentino de OceanografĂ­a (i); ArgentinaFil: Caceres, Eduardo Jorge. Universidad Nacional del Sur. Departamento de BiologĂ­a, BioquĂ­mica y Farmacia. Laboratorio de FicologĂ­a y MicologĂ­a; ArgentinaFil: Parodi, Elisa Rosalia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico BahĂ­a Blanca. Instituto Argentino de OceanografĂ­a (i); Argentina. Universidad Nacional del Sur. Departamento de BiologĂ­a, BioquĂ­mica y Farmacia. Laboratorio de EcologĂ­a AcuĂĄtica; Argentin

    The effects of warming on the ecophysiology of two co-existing kelp species with contrasting distributions

    Get PDF
    The northeast Atlantic has warmed significantly since the early 1980s, leading to shifts in species distributions and changes in the structure and functioning of communities and ecosystems. This study investigated the effects of increased temperature on two co-existing habitat-forming kelps: Laminaria digitata, a northern boreal species, and Laminaria ochroleuca, a southern Lusitanian species, to shed light on mechanisms underpinning responses of trailing and leading edge populations to warming. Kelp sporophytes collected from southwest United Kingdom were maintained under 3 treatments: ambient temperature (12 °C), +3 °C (15 °C) and +6 °C (18 °C) for 16 days. At higher temperatures, L. digitata showed a decline in growth rates and Fv/Fm, an increase in chemical defence production and a decrease in palatability. In contrast, L. ochroleuca demonstrated superior growth and photosynthesis at temperatures higher than current ambient levels, and was more heavily grazed. Whilst the observed decreased palatability of L. digitata held at higher temperatures could reduce top-down pressure on marginal populations, field observations of grazer densities suggest that this may be unimportant within the study system. Overall, our study suggests that shifts in trailing edge populations will be primarily driven by ecophysiological responses to high temperatures experienced during current and predicted thermal maxima, and although compensatory mechanisms may reduce top-down pressure on marginal populations, this is unlikely to be important within the current biogeographical context. Better understanding of the mechanisms underpinning climate-driven range shifts is important for habitat-forming species like kelps, which provide organic matter, create biogenic structure and alter environmental conditions for associated communities

    Using Post-settlement Demography to Estimate Larval Survivorship: A Coral Reef Fish Example

    No full text
    Many species have multi-stage life cycles in which the youngest stages (e.g., larvae) are small, dispersive, and abundant, whereas later stages are sessile or sedentary. Quantifying survival throughout such early stages is critical for understanding dispersal, population dynamics, and life history evolution. However, dispersive stages can be very difficult to sample in situ, and estimates of survival through the entire duration of these stages are typically poor. Here we describe how demographic information from juveniles and adults can be used to estimate survival throughout a dispersive larval stage that was not sampled directly. Using field measurements of demography, we show that detailed information on post-settlement growth, survival, and reproduction can be used to estimate average larval survivorship under the assumption that a typical individual replaces itself over its lifetime. Applying this approach to a common coral reef fish (bicolor damselfish, Stegastes partitus), we estimated average larval survivorship to be 0.108 % (95 % CI 0.025–0.484). We next compared this demography-based estimate to an expected value derived from published estimates of larval mortality rates. Our estimate of larval survivorship for bicolor damselfish was approximately two orders of magnitude greater than what would be expected if larval mortality of this species followed the average, size-dependent pattern of mortality inferred from a published sample of marine fishes. Our results highlight the importance of understanding mortality during the earliest phases of larval life, which are typically not sampled, as well as the need to understand the details of how larval mortality scales with body size
    corecore