17 research outputs found

    Renal Aging and Kidney Transplantation

    Get PDF

    Delayed diagnosis and treatment of extreme hypertriglyceridemia due to rejection of a lipemic sample

    Get PDF
    Most laboratories routinely determine haemolysis, icterus and lipemia indices to identify lipemic samples and reject potentially affected results. Hypertriglyceridemia is the most common cause of lipemia and severe hypertriglyceridemia (≥ 11.3 mmol/L) is a major risk factor of acute pancreatitis. A 56-year-old woman attended the outpatient clinic for a follow-up visit 1 month after a kidney transplantation. Her immunosuppressive therapy consisted of corticosteroids, cyclosporine, and mycophenolic acid. The routine clinical chemistry sample was rejected due to extreme lipemia. The comment “extreme lipemic sample” was added on the report, but the requesting physician could not be reached. The Cobas 8000 gave a technical error (absorption > 3.3) for the HIL-indices (L-index: 38.6 mmol/L) which persisted after high-speed centrifugation. The patient was given a new appointment 2 days later. The new sample was also grossly lipemic and gave the same technical error (L-index: 35.9 mmol/L). The second sample was manually diluted 20-fold after centrifugation to obtain a result for triglycerides within the measuring range (0.10–50.0 mmol/L). Triglycerides were 169.1 mmol/L, corresponding to very severe hypertriglyceridemia. This result was communicated to the nephrologist and the patient immediately recalled to the hospital. She received therapeutic plasma exchange the next day and did not develop acute pancreatitis. This case illustrates the delicate balance between avoiding the release of unreliable results due to lipemia and the risk of delayed diagnosis when results are rejected. Providing an estimate of the degree of hypertriglyceridemia might be preferable to rejecting the result

    Donorleeftijd en versnelde veroudering van transplantnieren

    No full text
    status: publishe

    How to use dialysis wisely in cancer patients?

    No full text
    status: Published onlin

    Lupus, DNA Methylation, and Air Pollution: A Malicious Triad

    No full text
    The pathogenesis of systemic lupus erythematosus (SLE) remains elusive to this day; however, genetic, epigenetic, and environmental factors have been implicated to be involved in disease pathogenesis. Recently, it was demonstrated that in systemic lupus erythematosus (SLE) patients, interferon-regulated genes are hypomethylated in naïve CD4+ T cells, CD19+ B lymphocytes, and CD14+ monocytes. This suggests that interferon-regulated genes may have been epigenetically poised in SLE patients for rapid expression upon stimulation by different environmental factors. Additionally, environmental studies have identified DNA (hypo)methylation changes as a potential mechanism of environmentally induced health effects in utero, during childhood and in adults. Finally, epidemiologic studies have firmly established air pollution as a crucial SLE risk factor, as studies showed an association between fine particulate matter (PM2.5) and traditional SLE biomarkers related to disease flare, hospital admissions, and an increased SLEDAI score. In this review, the relationship between aberrant epigenetic regulation, the environment, and the development of SLE will be discussed

    Intrarenal arteriosclerosis and telomere attrition associate with dysregulation of the cholesterol pathway

    No full text
    BACKGROUND: Recently, we demonstrated that arteriosclerosis in the smaller intrarenal arteries is associated with shorter telomere length, independently of history of cardiovascular events and calendar age. This suggests that intrarenal arteriosclerosis reflects replicative senescence, although the underlying molecular alterations remain unclear. RESULTS: Shorter intrarenal telomere length associated significantly with the presence of renal arteriosclerosis (T/S ratio 0.91±0.15 vs. 1.20±0.23 with vs. without arteriosclerosis, p=0.007, test cohort; T/S ratio 0.98 ±0.26 vs. 1.03 ±0.18 with vs. without arteriosclerosis, p=0.02, validation cohort). The presence versus absence of intrarenal arteriosclerosis was associated with differential expression of 1472 transcripts. Pathway analysis revealed enrichment of molecules involved in the superpathway of cholesterol biosynthesis as the most significant. The differential expression of these genes was confirmed in the independent validation cohort. Furthermore, the specific mRNA expression of the molecules in the superpathway of cholesterol biosynthesis associated significantly with intrarenal telomere length, and with history of cardiovascular events. INTERPRETATION: Our study illustrates that the superpathway of cholesterol biosynthesis interacts with the previously published association between shorter telomere length and arteriosclerosis. METHODS: This study included a test cohort of 40 consecutive kidney donors (calendar age 48.0 ± 15), with biopsies obtained prior to transplantation. Intrarenal leucocyte telomere length content was assessed using quantitative RT-PCR. Whole genome microarray mRNA expression analysis was performed using Affymetrix Gene 2.0 ST arrays. We investigated the associations between mRNA gene expression, telomere length as marker of replicative senescence, and intrarenal arteriosclerosis (Banff "cv" score = vascular fibrous intimal thickening = intimal hyperplasia) using adjusted multiple regression models. For biological interpretation and pathway overrepresentation analysis, we used Ingenuity Pathway Analysis. The significant pathways and genes were validated in an independent validation cohort of 173 kidney biopsies obtained prior to transplantation.status: publishe

    Adverse Effects of fine particulate matter on human kidney functioning: a systematic review.

    No full text
    BACKGROUND: Ambient fine particulate matter (PM < 2.5 μm, PM2.5) is gaining increasing attention as an environmental risk factor for health. The kidneys are considered a particularly vulnerable target to the toxic effects that PM2.5 exerts. Alteration of kidney function may lead to a disrupted homeostasis, affecting disparate tissues in the body. This review intends to summarize all relevant knowledge published between January 2000 and December 2021 on the effects of ambient PM2.5 and the adverse effects on kidney function in adults (≥ 18 years). RESULTS AND DISCUSSION: Studies published in peer-reviewed journals, written in English, regarding the effects of PM2.5 on kidney function and the development and/or exacerbation of kidney disease(s) were included. Of the 587 nonduplicate studies evaluated, 40 were included, comprising of studies on healthy or diagnosed with pre-existing disease (sub)populations. Most of the studies were cohort studies (n = 27), followed by 10 cross-sectional, 1 ecological and 2 time-series studies. One longitudinal study was considered intermediate risk of bias, the other included studies were considered low risk of bias. A large portion of the studies (n = 36) showed that PM2.5 exposure worsened kidney outcome(s) investigated; however, some studies show contradictory results. Measurement of the estimated glomerular filtration rate, for instance, was found to be positively associated (n = 8) as well as negatively associated (n = 4) with PM2.5. LIMITATIONS AND CONCLUSION: The main limitations of the included studies include residual confounding (e.g., smoking) and lack of individual exposure levels. The majority of included studies focused on specific subpopulations, which may limit generalizability. Evidence of the detrimental effects that ambient PM2.5 may exert on kidney function is emerging. However, further investigations are required to determine how and to what extent air pollution, specifically PM2.5, exerts adverse effects on the kidney and alters its function. REGISTRATION: The systematic review protocol was submitted and published by the International Prospective Register of Systematic Reviews (PROSPERO; CRD42020175615 )

    Ambient black carbon reaches the kidneys

    No full text
    Background: Ultrafine particles, including black carbon (BC), can reach the systemic circulation and therefore may distribute to distant organs upon inhalation. The kidneys may be particularly vulnerable to the adverse effects of BC exposure due to their filtration function. Objectives: We hypothesized that BC particles reach the kidneys via the systemic circulation, where the particles may reside in structural components of kidney tissue and impair kidney function. Methods: In kidney biopsies from 25 transplant patients, we visualized BC particles using white light generation under femtosecond-pulsed illumination. The presence of urinary kidney injury molecule-1 (KIM-1) and cystatin c (CysC) were evaluated with ELISA. We assessed the association between internal and external exposure matrices and urinary biomarkers using Pearson correlation and linear regression models. Results: BC particles could be identified in all biopsy samples with a geometric mean (5th, 95th percentile) of 1.80 × 103 (3.65 × 102, 7.50 × 103) particles/mm3 kidney tissue, predominantly observed in the interstitium (100 %) and tubules (80 %), followed by the blood vessels and capillaries (40 %), and the glomerulus (24 %). Independent from covariates and potential confounders, we found that each 10 % higher tissue BC load resulted in 8.24 % (p = 0.03) higher urinary KIM-1. In addition, residential proximity to a major road was inversely associated with urinary CysC (+10 % distance: −4.68 %; p = 0.01) and KIM-1 (+10 % distance: −3.99 %; p < 0.01). Other urinary biomarkers, e.g., the estimated glomerular filtration rate or creatinine clearance showed no significant associations. Discussion and conclusion: Our findings that BC particles accumulate near different structural components of the kidney represent a potential mechanism explaining the detrimental effects of particle air pollution exposure on kidney function. Furthermore, urinary KIM-1 and CysC show potential as air pollution-induced kidney injury biomarkers for taking a first step in addressing the adverse effects BC might exert on kidney function

    Telomere length, cardiovascular risk and arteriosclerosis in human kidneys: an observational cohort study

    No full text
    Replicative senescence, associated with telomere shortening, plays an important role in aging and cardiovascular disease. The relation between telomere length, cardiovascular risk, and renal disease is unknown.status: publishe

    Telomere length, cardiovascular risk and arteriosclerosis in human kidneys: an observational cohort study

    No full text
    Replicative senescence, associated with telomere shortening, plays an important role in aging and cardiovascular disease. The relation between telomere length, cardiovascular risk, and renal disease is unknown.status: publishe
    corecore