112 research outputs found

    TCT Connect 2020 Trial Update: FORECAST, COMBINE OCT-FFR and DEFINE-PCI

    Get PDF
    Recent studies reported at TCT Connect 2020 have investigated a number of open clinical questions regarding the role of coronary physiology and the assessment of plaque morphology for diagnosis (FORECAST), risk stratification (COMBINE OCT-FFR) and treatment evaluation (DEFINE-PCI) of patients with coronary artery disease. In this article, the authors provide a critical appraisal of these studies and evaluate how they add to the current evidence base for management of patients with epicardial coronary artery disease. Furthermore, they discuss their potential impact on clinical practice, limitations of these studies and unanswered clinical questions that are areas for future research

    Validation of a functional screening instrument for dementia in an elderly sri lankan population: comparison of modified bristol and blessed activities of daily living scales

    Get PDF
    Abstract Background Cognitive tests have been used in population surveys as first stage screens for dementia but are biased by education. However functional ability scales are less biased by education than the cognitive scale and thus can be used in screening for dementia. Objective To validate Activities of Daily Living (ADL) scale appropriate for use in assessing the presence of dementia in an elderly population living in care homes in Sri Lanka. Method Sinhalese version of the modified Bristol and Blessed scale was administered to subjects aged 55 years and above residing in 14 randomly selected elders' homes. Receiver Operating Characteristic (ROC) was used to determine the cut-off scores of both the scales. Results Based on the ROC analysis, optimal cut off score of the modified Bristol scale was 20 with a sensitivity of 100%, specificity of 74.2% and the area under the curve 0.933(95% CI: 0.871-0.995) while the optimal cut off score of the modified Blessed scale was 10.5 with a sensitivity of 100%, specificity of 71% and the area under the curve 0.892 (95% CI: 0.816-0.967). Conclusion The findings confirm that both the scales can be used in screening for dementia in the elderly living in care homes in Sri Lanka.</p

    Delayed recovery of coronary resistive vessel function after coronary angioplasty

    Get PDF
    AbstractObjectives. The aim of this study was to use Doppler catheterization and sequential dynamic positron emission tomography (PET) to investigate the role and time course of abnormal coronary resistive vessel function in the impairment of the coronary vasodilator response (maximal/basal coronary blood flow) after successful coronary angioplasty.Background. The coronary vasodilator response may be impaired immediately after coronary angioplasty, despite successful dilation of a flow-limiting stenosis.Methods. Twelve men (mean age 52 ± 10 years) with singlevessel coronary artery disease and normal left ventricular function were studied. The coronary vasodilator response to intravenous dipyridamole (0.5 mg·kg−1over 4 min) was determined from intracoronary Doppler measurement of coronary How velocity, before and after successful angioplasty. Basal and maximal myocardial blood flow in the angioplasty region and a normal region were determined in nine patients with positron emission tomography with H215O at 1 day (PET1), 7 days (PET2) and 3 months (PET3) after angioplasty.Results. The coronary vasodilator response, measured by Doppler catheterization, was similar before and immediately after angioplasty, 1.63 ± 0.41 and 1.62 ± 0.55, respectively (p = NS). After angioplasty, in seven of nine patients without restenosis, basal myocardial blood flow at PET1, PET2and PET3was 0.98 ± 0.16, 0.94 ± 0.09 and 0.99 ± 0.13 ml·min−1·g−1, respectively, in the remote region and 1.19 ± 0.23 (p < 0.01 vs. remote region), 1.17 ± 0.19 (p < 0.01 vs. remote region) and 1.10 ± 0.08 ml·min-1·g−1(p = NS vs. remote region), respectively, in the angioplasty region. Myocardial blood flow after dipyridamole at PET1, PET2and PET3was 3.04 ± 0.68, 3.00 ± 0.71 and 3.00 ± 0.60 ml·ml·min−1g−1, respectively, in the remote region and 2.11 ± 0.80 (p < 0.01 vs. remote region), 2.28 ± 0.73 (p = NS vs. remote region) and 3.06 ± 0.86 ml · min−1· g−1(p = NS vs. remote region), respectively, in the angioplasty region. The coronary vasodilator response at PET1, PET2and PET3was 3.15 ± 0.85, 3.18 ± 0.68 and 3.08 ± 0.75, respectively, in the remote region and 1.80 ± 0.68 (p < 0.01 vs. remote region), 1.94 ± 0.49 (p < 0.01 vs. remote region) and 2.77 ± 0.74 (p = NS vs. remote region), respectively, in the angioplasty region.Conclusions. After successful angioplasty, basal myocardial blood flow is increased for ≥7 days in the angioplasty region, with a reduction in the dipyridamole · induced increase in maximal myocardial blood flow for ≥24 h after the procedure. Thus, the coronary vasodilator response is impaired for ≥7 days after angioplasty, indicating that there is abnormal resistive vessel function in the coronary vascular bed distal to a coronary artery stenosis that persists for 7 days to 3 months

    Quantification of plaque stiffness by Brillouin microscopy in experimental thin cap fibroatheroma

    Get PDF
    Plaques vulnerable to rupture are characterized by a thin and stiff fibrous cap overlaying a soft lipid-rich necrotic core. The ability to measure local plaque stiffness directly to quantify plaque stress and predict rupture potential would be very attractive, but no current technology does so. This study seeks to validate the use of Brillouin microscopy to measure the Brillouin frequency shift, which is related to stiffness, within vulnerable plaques. The left carotid artery of an ApoE-/- mouse was instrumented with a cuff that induced vulnerable plaque development in nine weeks. Adjacent histological sections from the instrumented and control arteries were stained for either lipids or collagen content, or imaged with confocal Brillouin microscopy. Mean Brillouin frequency shift was 15.79±0.09 GHz in the plaque compared with 16.24±0.15 (p \u3c 0.002) and 17.16±0.56 GHz (p \u3c 0.002) in the media of the diseased and control vessel sections, respectively. In addition, frequency shift exhibited a strong inverse correlation with lipid area of 20.67±0.06 (p \u3c 0.01) and strong direct correlation with collagen area of 0.71±0.15 (p \u3c 0.05). This is the first study, to the best of our knowledge, to apply Brillouin spectroscopy to quantify atherosclerotic plaque stiffness, which motivates combining this technology with intravascular imaging to improve detection of vulnerable plaques in patients

    Duchenne muscular dystrophy from brain to muscle: The role of brain dystrophin isoforms in motor functions

    Get PDF
    Brain function and its effect on motor performance in Duchenne muscular dystrophy (DMD) is an emerging concept. The present study explored how cumulative dystrophin isoform loss, age, and a corticosteroid treatment affect DMD motor outcomes. A total of 133 genetically confirmed DMD patients from Sri Lanka were divided into two groups based on whether their shorter dystrophin isoforms (Dp140, Dp116, and Dp71) were affected: Group 1, containing patients with Dp140, Dp116, and Dp71 affected (n = 98), and Group 2, containing unaffected patients (n = 35). A subset of 52 patients (Group 1, n = 38; Group 2, n = 14) was followed for up to three follow-ups performed in an average of 28-month intervals. The effect of the cumulative loss of shorter dystrophin isoforms on the natural history of DMD was analyzed. A total of 74/133 (56%) patients encountered developmental delays, with 66/74 (89%) being in Group 1 and 8/74 (11%) being in Group 2 (p \u3c 0.001). Motor developmental delays were predominant. The hip and knee muscular strength, according to the Medical Research Council (MRC) scale and the North Star Ambulatory Assessment (NSAA) activities, “standing on one leg R”, “standing on one leg L”, and “walk”, declined rapidly in Group 1 (p \u3c 0.001 In the follow-up analysis, Group 1 patients became wheelchair-bound at a younger age than those of Group 2 (p = 0.004). DMD motor dysfunction is linked to DMD mutations that affect shorter dystrophin isoforms. When stratifying individuals for clinical trials, considering the DMD mutation site and its impact on a shorter dystrophin isoform is crucial

    Types of the cerebral arterial circle (circle of Willis) in a Sri Lankan Population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The variations of the circle of Willis (CW) are clinically important as patients with effective collateral circulations have a lower risk of transient ischemic attack and stroke than those with ineffective collaterals. The aim of the present cadaveric study was to investigate the anatomical variations of the CW and to compare the frequency of prevalence of the different variations with previous autopsy studies as variations in the anatomy of the CW as a whole have not been studied in the Indian subcontinent.</p> <p>Methods</p> <p>The external diameter of all the arteries forming the CW in 225 normal Sri Lankan adult cadaver brains was measured using a calibrated grid to determine the prevalence in the variation in CW. Chisquared tests and a correspondence analysis were performed to compare the relative frequencies of prevalence of anatomical variations in the CW across 6 studies of diverse ethnic populations.</p> <p>Results</p> <p>We report 15 types of variations of CW out of 22 types previously described and one additional type: hypoplastic precommunicating part of the anterior cerebral arteries (A1) and contralateral posterior communicating arteries (PcoA) 5(2%). Statistically significant differences (p < 0.0001) were found between most of the studies except for the Moroccan study. An especially notable difference was observed in the following 4 configurations: 1) hypoplastic precommunicating part of the posterior cerebral arteries (P1), and contralateral A1, 2) hypoplastic PcoA and contralateral P1, 3) hypoplastic PcoA, anterior communicating artery (AcoA) and contralateral P1, 4) bilateral hypoplastic P1s and AcoA in a Caucasian dominant study by Fisher versus the rest of the studies.</p> <p>Conclusion</p> <p>The present study reveals that there are significant variations in the CW among intra and inter ethnic groups (Caucasian, African and Asian: Iran and Sri Lanka dominant populations), and warrants further studies keeping the methods of measurements, data assessment, and the definitions of hypoplasia the same.</p

    Inducing Persistent Flow Disturbances Accelerates Atherogenesis and Promotes Thin Cap Fibroatheroma Development in \u3ci\u3eD374Y\u3c/i\u3e-PCSK9 Hypercholesterolemic Minipigs

    Get PDF
    Background—Although disturbed flow is thought to play a central role in the development of advanced coronary atherosclerotic plaques, no causal relationship has been established. We evaluated whether inducing disturbed flow would cause the development of advanced coronary plaques, including thin cap fibroatheroma (TCFA). Methods and Results—D374Y-PCSK9 hypercholesterolemic minipigs (N=5) were instrumented with an intracoronary shear-modifying stent (SMS). Frequency-domain optical coherence tomography was obtained at baseline, immediately post-stent, 19, and 34 weeks and used to compute shear stress metrics of disturbed flow. At 34 weeks, plaque type was assessed within serially-collected histological sections and co-registered to the distribution of each shear metric. The SMS caused a flow-limiting stenosis and blood flow exiting the SMS caused regions of increased shear stress on the outer curvature and large regions of low and multidirectional shear stress on the inner curvature of the vessel. As a result, plaque burden was ~3-fold higher downstream of the SMS compared to both upstream of the SMS and in the control artery (pppp\u3c0.005). Conclusions—These data support a causal role for lowered and multidirectional shear stress in the initiation of advanced coronary atherosclerotic plaques. Persistently lowered shear stress appears to be the principal flow disturbance needed for the formation of TCFA

    Vulnerable plaques and patients: state-of-the-art

    Get PDF
    Despite advanced understanding of the biology of atherosclerosis, coronary heart disease remains the leading cause of death worldwide. Progress has been challenging as half of the individuals who suffer sudden cardiac death do not experience premonitory symptoms. Furthermore, it is well-recognized that also a plaque that does not cause a haemodynamically significant stenosis can trigger a sudden cardiac event, yet the majority of ruptured or eroded plaques remain clinically silent. In the past 30 years since the term 'vulnerable plaque' was introduced, there have been major advances in the understanding of plaque pathogenesis and pathophysiology, shifting from pursuing features of 'vulnerability' of a specific lesion to the more comprehensive goal of identifying patient 'cardiovascular vulnerability'. It has been also recognized that aside a thin-capped, lipid-rich plaque associated with plaque rupture, acute coronary syndromes (ACS) are also caused by plaque erosion underlying between 25% and 60% of ACS nowadays, by calcified nodule or by functional coronary alterations. While there have been advances in preventive strategies and in pharmacotherapy, with improved agents to reduce cholesterol, thrombosis, and inflammation, events continue to occur in patients receiving optimal medical treatment. Although at present the positive predictive value of imaging precursors of the culprit plaques remains too low for clinical relevance, improving coronary plaque imaging may be instrumental in guiding pharmacotherapy intensity and could facilitate optimal allocation of novel, more aggressive, and costly treatment strategies. Recent technical and diagnostic advances justify continuation of interdisciplinary research efforts to improve cardiovascular prognosis by both systemic and 'local' diagnostics and therapies. The present state-of-the-art document aims to present and critically appraise the latest evidence, developments, and future perspectives in detection, prevention, and treatment of 'high-risk' plaques occurring in 'vulnerable' patients

    Bio-Repository of DNA in stroke (BRAINS): A study protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Stroke is one of the commonest causes of mortality in the world and anticipated to be an increasing burden to the developing world. Stroke has a genetic basis and identifying those genes may not only help us define the mechanisms that cause stroke but also identify novel therapeutic targets. However, large scale highly phenotyped DNA repositories are required in order for this to be achieved.</p> <p>Methods</p> <p>The proposed Bio-Repository of DNA in Stroke (BRAINS) will recruit all subtypes of stroke as well as controls from two different continents, Europe and Asia. Subjects recruited from the UK will include stroke patients of European ancestry as well as British South Asians. Stroke subjects from South Asia will be recruited from India and Sri Lanka. South Asian cases will also have control subjects recruited.</p> <p>Discussion</p> <p>We describe a study protocol to establish a large and highly characterized stroke biobank in those of European and South Asian descent. With different ethnic populations being recruited, BRAINS has the ability to compare and contrast genetic risk factors between those of differing ancestral descent as well as those who migrate into different environments.</p
    corecore