4 research outputs found

    Engineering a minimal cloning vector from a pUC18 plasmid backbone with an extended multiple cloning site

    Get PDF
    Minimal plasmids play an essential role in many intermediate steps in molecular biology. They can for example be used to assemble building blocks in synthetic biology or be used as intermediate cloning plasmids that are ideal for PCR-based mutagenesis methods. A small backbone also opens up for additional unique restriction enzyme cloning sites. Here we describe the generation of pICOz, a 1185 bp fully functional high-copy cloning plasmid with an extended multiple cloning site (MCS). To our knowledge, this is the smallest high-copy cloning vector ever described

    Engineering a minimal cloning vector from a pUC18 plasmid backbone with an extended multiple cloning site

    Get PDF
    Minimal plasmids play an essential role in many intermediate steps in molecular biology. For example, they can be used to assemble building blocks in synthetic biology or be used as intermediate cloning plasmids that are ideal for PCR-based mutagenesis methods. A small backbone also opens up for additional unique restriction enzyme cloning sites. Here we describe the generation of pICOz, a 1185-bp fully functional high-copy cloning plasmid with an extended multiple cloning site. We believe that this is the smallest high-copy cloning vector ever described. METHOD SUMMARY: We eliminated all superfluous sequences in a commonly used cloning vector in order to generate as small a cloning plasmid as possible by simple iterative PCR mutagenesis

    Generation of a new Gateway-compatible inducible lentiviral vector platform allowing easy derivation of co-transduced cells

    No full text
    In contrast to most common gene delivery techniques, lentiviral vectors allow targeting of almost any mammalian cell type, even non-dividing cells, and they stably integrate in the genome. Therefore, these vectors are a very powerful tool for biomedical research. Here we report the generation of a versatile new set of 22 lentiviral vectors with broad applicability in multiple research areas. In contrast to previous systems, our platform provides a choice between constitutive and/or conditional expression and six different C-terminal fusions. Furthermore, two compatible selection markers enable the easy derivation of stable cell lines co-expressing differently tagged transgenes in a constitutive or inducible manner. We show that all of the vector features are functional and that they contribute to transgene overexpression in proof-of-principle experiments
    corecore