13 research outputs found

    Residential exposure to microbial emissions from livestock farms: Implementation and evaluation of land use regression and random forest spatial models

    Get PDF
    Adverse health effects have been linked with exposure to livestock farms, likely due to airborne microbial agents. Accurate exposure assessment is crucial in epidemiological studies, however limited studies have modelled bioaerosols. This study used measured concentrations in air of livestock commensals (Escherichia coli (E. coli) and Staphylococcus species (spp.)), and antimicrobial resistance genes (tetW and mecA) at 61 residential sites in a livestock-dense region in the Netherlands. For each microbial agent, land use regression (LUR) and random forest (RF) models were developed using Geographic Information System (GIS)-derived livestock-related characteristics as predictors. The mean and standard deviation of annual average concentrations (gene copies/m3) of E. coli, Staphylococcus spp., tetW and mecA were as follows: 38.9 (±1.98), 2574 (±3.29), 20991 (±2.11), and 15.9 (±2.58). Validated through 10-fold cross-validation (CV), the models moderately explained spatial variation of all microbial agents. The best performing model per agent explained respectively 38.4%, 20.9%, 33.3% and 27.4% of the spatial variation of E. coli, Staphylococcus spp., tetW and mecA. RF models had somewhat better performance than LUR models. Livestock predictors related to poultry and pig farms dominated all models. To conclude, the models developed enable enhanced estimates of airborne livestock-related microbial exposure in future epidemiological studies. Consequently, this will provide valuable insights into the public health implications of exposure to specific microbial agents

    Associations of Anti-COVID-19 Measures and Lifestyle Changes during the COVID-19 Pandemic with Sleep Patterns in the Netherlands: A Longitudinal Study

    Get PDF
    Although there is scientific evidence for an increased prevalence of sleep disorders during the coronavirus disease 2019 (COVID-19) pandemic, there is still limited information on how lifestyle factors might have affected sleep patterns. Therefore, we followed a large cohort of participants in the Netherlands (n = 5,420) for up to 1 year (September 2020-2021) via monthly Web-based questionnaires to identify lifestyle changes (physical activity, cigarette smoking, alcohol consumption, electronic device use, and social media use) driven by anti-COVID-19 measures and their potential associations with self-reported sleep (latency, duration, and quality). We used the Containment and Health Index (CHI) to assess the stringency of anti-COVID-19 measures and analyzed associations through multilevel ordinal response models. We found that more stringent anti-COVID-19 measures were associated with higher use of electronic devices (per interquartile-range increase in CHI, odds ratio (OR) = 1.47, 95% confidence interval (CI): 1.40, 1.53), less physical activity (OR = 0.94, 95% CI: 0.90, 0.98), lower frequency of alcohol consumption (OR = 0.63, 95% CI: 0.60, 0.66), and longer sleep duration (OR = 1.11, 95% CI: 1.05, 1.16). Lower alcohol consumption frequency and higher use of electronic devices and social media were associated with longer sleep latency. Lower physical activity levels and higher social media and electronic device use were related to poorer sleep quality and shorter sleep duration

    Residential exposure to livestock farms and lung function in adolescence – The PIAMA birth cohort study

    Get PDF
    Background: There is a growing interest in the impact of air pollution from livestock farming on respiratory health. Studies in adults suggest adverse effects of livestock farm emissions on lung function, but so far, studies involving children and adolescents are lacking. Objectives: To study the association of residential proximity to livestock farms and modelled particulate matter ≤10 μm (PM10) from livestock farms with lung function in adolescence. Methods: We performed a cross-sectional study among 715 participants of the Dutch prospective PIAMA (Prevention and Incidence of Asthma and Mite Allergy) birth cohort study. Relationships of different indicators of residential livestock farming exposure (distance to farms, distance-weighted number of farms, cattle, pigs, poultry, horses and goats within 3 km; modelled atmospheric PM10 concentrations from livestock farms) with forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) at age 16 were assessed by linear regression taking into account potential confounders. Associations were expressed per interquartile range increase in exposure. Results: Higher exposure to livestock farming was consistently associated with a lower FEV1, but not with FVC among participants living in less urbanized municipalities (<1500 addresses/km2, N = 402). Shorter distances of homes to livestock farms were associated with a 1.4% (0.2%; 2.7%) lower FEV1. Larger numbers of farms within 3 km and higher concentrations of PM10 from livestock farming were associated with a 1.8% (0.8%, 2.9%) and 0.9% (0.4%,1.5%) lower FEV1, respectively. Conclusions: Our findings suggest that higher exposure to livestock farming is associated with a lower FEV1 in adolescents. Replication and more research on the etiologic agents involved in these associations and the underlying mechanisms is needed

    Impact of COVID-19 containment measures on perceived health and health-protective behavior: a longitudinal study

    Get PDF
    This longitudinal study aimed to assess the impact of COVID-19 containment measures on perceived health, health protective behavior and risk perception, and investigate whether chronic disease status and urbanicity of the residential area modify these effects. Participants (n = 5420) were followed for up to 14 months (September 2020-October 2021) by monthly questionnaires. Chronic disease status was obtained at baseline. Urbanicity of residential areas was assessed based on postal codes or neighborhoods. Exposure to containment measures was assessed using the Containment and Health Index (CHI). Bayesian multilevel-models were used to assess effect modification of chronic disease status and urbanicity by CHI. CHI was associated with higher odds for worse physical health in people with chronic disease (OR = 1.09, 95% credibility interval (CrI) = 1.01, 1.17), but not in those without (OR = 1.01, Crl = 0.95, 1.06). Similarly, the association of CHI with higher odds for worse mental health in urban dwellers (OR = 1.31, Crl = 1.23, 1.40) was less pronounced in rural residents (OR = 1.20, Crl = 1.13, 1.28). Associations with behavior and risk perception also differed between groups. Our study suggests that individuals with chronic disease and those living in urban areas are differentially affected by government measures put in place to manage the COVID-19 pandemic. This highlights the importance of considering vulnerable subgroups in decision making regarding containment measures

    Potential environmental transmission routes of SARS-CoV-2 inside a large meat processing plant experiencing COVID-19 clusters

    Get PDF
    Worldwide exceptionally many COVID-19 clusters were observed in meat processing plants. Many contributing factors, promoting transmission, were suggested, including climate conditions in cooled production rooms favorable for environmental transmission but actual sampling studies are lacking. We aimed to assess SARS-CoV-2 contamination of air and surfaces to gain insight in potential environmental transmission in a large Dutch meat processing plant experiencing COVID-19 clusters. We performed SARS-CoV-2 screening of workers operating in cooled production rooms and intensive environmental sampling during a two-week study period in June 2020. Sampling of air (both stationary and personal), settling dust, ventilation systems, and sewage was performed. Swabs were collected from high-touch surfaces and workers’ hands. Screening of workers was done using oronasopharyngeal swabs. Samples were tested for presence of SARS-CoV-2 RNA by RT-qPCR. Of the 76 (predominantly asymptomatic) workers tested, 27 (35.5%) were SARS-CoV-2 RNA positive with modest to low viral loads (Ct≥29.7). In total, 6 out of 203 surface swabs were positive (Ct ≥38), being swabs taken from communal touchscreens/handles. One of the 12 personal air samples and one of the 4 sewage samples were positive, RNA levels were low (Ct≥38). All other environmental samples tested negative. Although one-third of workers tested SARS-CoV-2 RT-PCR positive, environmental contamination was limited. Hence widespread transmission of SARS-CoV-2 via air and surfaces was considered unlikely within this plant at the time of investigation in the context of strict COVID-19 control measures in place

    Genome sequences of seven megrivirus strains from chickens in the Netherlands

    Get PDF
    We report seven chicken megrivirus genome sequences identified in chicken fecal samples from a broiler farm in The Netherlands. The sequences were determined using metagenomic sequencing and would expand our understanding of the genome diversity of megriviruses

    Endotoxin and particulate matter emitted by livestock farms and respiratory health effects in neighboring residents

    No full text
    Background: Living in livestock-dense areas has been associated with health effects, suggesting airborne exposures to livestock farm emissions to be relevant for public health. Livestock farm emissions involve complex mixtures of various gases and particles. Endotoxin, a pro-inflammatory agent of microbial origin, is a constituent of livestock farm emitted particulate matter (PM) that is potentially related to the observed health effects. Quantification of livestock associated endotoxin exposure at residential addresses in relation to health outcomes has not been performed earlier. Objectives: We aimed to assess exposure-response relations for a range of respiratory endpoints and atopic sensitization in relation to livestock farm associated PM10 and endotoxin levels. Methods: Self-reported respiratory symptoms of 12,117 persons participating in a population-based cross-sectional study were analyzed. For 2494 persons, data on lung function (spirometry) and serologically assessed atopic sensitization was additionally available. Annual-average PM10 and endotoxin concentrations at home addresses were predicted by dispersion modelling and land-use regression (LUR) modelling. Exposure-response relations were analyzed with generalized additive models. Results: Health outcomes were generally more strongly associated with exposure to livestock farm emitted endotoxin compared to PM10. An inverse association was observed for dispersion modelled exposure with atopic sensitization (endotoxin: p =.004, PM10: p =.07) and asthma (endotoxin: p =.029, PM10: p =.022). Prevalence of respiratory symptoms decreased with increasing endotoxin concentration at the lower range, while at the higher range prevalence increased with increasing concentration (p 10 and endotoxin were not statistically significant (p >.05). Conclusions: Exposure to livestock farm emitted particulate matter is associated with respiratory health effects and atopic sensitization in non-farming residents. Results indicate endotoxin to be a potentially plausible etiologic agent, suggesting non-infectious aspects of microbial emissions from livestock farms to be important with respect to public health.</p

    Genome sequences of seven megrivirus strains from chickens in the Netherlands

    No full text
    We report seven chicken megrivirus genome sequences identified in chicken fecal samples from a broiler farm in The Netherlands. The sequences were determined using metagenomic sequencing and would expand our understanding of the genome diversity of megriviruses

    Potential environmental transmission routes of SARS-CoV-2 inside a large meat processing plant experiencing COVID-19 clusters

    No full text
    Worldwide exceptionally many COVID-19 clusters were observed in meat processing plants. Many contributing factors, promoting transmission, were suggested, including climate conditions in cooled production rooms favorable for environmental transmission but actual sampling studies are lacking. We aimed to assess SARS-CoV-2 contamination of air and surfaces to gain insight in potential environmental transmission in a large Dutch meat processing plant experiencing COVID-19 clusters. We performed SARS-CoV-2 screening of workers operating in cooled production rooms and intensive environmental sampling during a two-week study period in June 2020. Sampling of air (both stationary and personal), settling dust, ventilation systems, and sewage was performed. Swabs were collected from high-touch surfaces and workers’ hands. Screening of workers was done using oronasopharyngeal swabs. Samples were tested for presence of SARS-CoV-2 RNA by RT-qPCR. Of the 76 (predominantly asymptomatic) workers tested, 27 (35.5%) were SARS-CoV-2 RNA positive with modest to low viral loads (Ct≥29.7). In total, 6 out of 203 surface swabs were positive (Ct ≥38), being swabs taken from communal touchscreens/handles. One of the 12 personal air samples and one of the 4 sewage samples were positive, RNA levels were low (Ct≥38). All other environmental samples tested negative. Although one-third of workers tested SARS-CoV-2 RT-PCR positive, environmental contamination was limited. Hence widespread transmission of SARS-CoV-2 via air and surfaces was considered unlikely within this plant at the time of investigation in the context of strict COVID-19 control measures in place
    corecore