7,568 research outputs found
H-Theorems from Autonomous Equations
The H-theorem is an extension of the Second Law to a time-sequence of states
that need not be equilibrium ones. In this paper we review and we rigorously
establish the connection with macroscopic autonomy.
If for a Hamiltonian dynamics for many particles, at all times the present
macrostate determines the future macrostate, then its entropy is non-decreasing
as a consequence of Liouville's theorem. That observation, made since long, is
here rigorously analyzed with special care to reconcile the application of
Liouville's theorem (for a finite number of particles) with the condition of
autonomous macroscopic evolution (sharp only in the limit of infinite scale
separation); and to evaluate the presumed necessity of a Markov property for
the macroscopic evolution.Comment: 13 pages; v1 -> v2: Sec. 1-2 considerably rewritten, minor
corrections in Sec. 3-
Bose-Einstein Correlations in e+e- -> W+W- at a Linear Collider
We show that the most popular method to simulate Bose-Einstein (BE)
interference effects predicts negligible correlations between identical pions
originating from the hadronic decay of different W's produced in e+e- -> W+W-
-> 4 jets at typical linear collider energies.Comment: 5 pages, 2 eps figures, Proccedings of the Workshop "Physics Studies
for a Future Linear Collider", QCD Working Group, 2000, DESY 123
Approach to ground state and time-independent photon bound for massless spin-boson models
It is widely believed that an atom interacting with the electromagnetic field
(with total initial energy well-below the ionization threshold) relaxes to its
ground state while its excess energy is emitted as radiation. Hence, for large
times, the state of the atom+field system should consist of the atom in its
ground state, and a few free photons that travel off to spatial infinity.
Mathematically, this picture is captured by the notion of asymptotic
completeness. Despite some recent progress on the spectral theory of such
systems, a proof of relaxation to the ground state and asymptotic completeness
was/is still missing, except in some special cases (massive photons, small
perturbations of harmonic potentials). In this paper, we partially fill this
gap by proving relaxation to an invariant state in the case where the atom is
modelled by a finite-level system. If the coupling to the field is sufficiently
infrared-regular so that the coupled system admits a ground state, then this
invariant state necessarily corresponds to the ground state. Assuming slightly
more infrared regularity, we show that the number of emitted photons remains
bounded in time. We hope that these results bring a proof of asymptotic
completeness within reach.Comment: 45 pages, published in Annales Henri Poincare. This archived version
differs from the journal version because we corrected an inconsequential
mistake in Section 3.5.1: to do this, a new paragraph was added after Lemma
3.
Damping of the HERA effect in DIS?
The drastic rise of the proton structure function F_2(x,Q^2) when the
Bj\"orken variable x decreases, seen at HERA for a large span of Q^2, negative
values for the 4-momentum transfer, may be damped when Q^2 increases beyond
several hundreds GeV^2. A new data analysis and a comparison with recent models
for the proton structure function is proposed to discuss this phenomenon in
terms of the derivative \partial ln F_2(x,Q^2)/\partial ln(1/x).Comment: 14 pages (LaTeX) including 7 figures, misprints are correcte
Complementarity of a Low Energy Photon Collider and LHC Physics
We discuss the complementarity between the LHC and a low energy photon
collider. We mostly consider the scenario, where the first linear collider is a
photon collider based on dual beam technology like CLIC.Comment: 29 pages, 37 figure, LP-200
The Higgs boson in the MSSM in light of the LHC
We investigate the expectations for the light Higgs signal in the MSSM in
different search channels at the LHC. After taking into account dark matter and
flavor constraints in the MSSM with eleven free parameters, we show that the
light Higgs signal in the channel is expected to be at most at
the level of the SM Higgs, while the from W fusion
and/or the can be enhanced. For the main discovery
mode, we show that a strong suppression of the signal occurs in two different
cases: low or large invisible width. A more modest suppression is
associated with the effect of light supersymmetric particles. Looking for such
modification of the Higgs properties and searching for supersymmetric partners
and pseudoscalar Higgs offer two complementary probes of supersymmetry.Comment: 19 pages, 8 figure
Steady state fluctuations of the dissipated heat for a quantum stochastic model
We introduce a quantum stochastic dynamics for heat conduction. A multi-level
subsystem is coupled to reservoirs at different temperatures. Energy quanta are
detected in the reservoirs allowing the study of steady state fluctuations of
the entropy dissipation. Our main result states a symmetry in its large
deviation rate function.Comment: 41 pages, minor changes, published versio
Testing the Higgs Mechanism in the Lepton Sector with multi-TeV e+e- Collisions
Multi-TeV e+e- collisions provide with a large enough sample of Higgs bosons
to enable measurements of its suppressed decays. Results of a detailed study of
the determination of the muon Yukawa coupling at 3 TeV, based on full detector
simulation and event reconstruction, are presented. The muon Yukawa coupling
can be determined with a relative accuracy of 0.04 to 0.08 for Higgs bosons
masses from 120 GeV to 150 GeV, with an integrated luminosity of 5 inverse-ab.
The result is not affected by overlapping two-photon background.Comment: 6 pages, 2 figures, submitted to J Phys G.: Nucl. Phy
- …