5 research outputs found

    Parameter estimation of binary black holes in the endpoint of the up-down instability

    Full text link
    Black-hole binary spin precession admits equilibrium solutions corresponding to systems with (anti-) aligned spins. Among these, binaries in the up-down configuration, where the spin of the heavier (lighter) black hole is co- (counter-) aligned with the orbital angular momentum, might be unstable to small perturbations of the spin directions. The occurrence of the up-down instability leads to gravitational-wave sources that formed with aligned spins but are detected with precessing spins. We present a Bayesian procedure based on the Savage-Dickey density ratio to test the up-down origin of gravitational-wave events. This is applied to both simulated signals, which indicate that achieving strong evidence is within the reach of current experiments, and the LIGO/Virgo events released to date, which indicate that current data are not informative enough

    Efficient multi-timescale dynamics of precessing black-hole binaries

    Full text link
    We present analytical and numerical progress on black-hole binary spin precession at second post-Newtonian order using multi-timescale methods. In addition to the commonly used effective spin which acts as a constant of motion, we exploit the weighted spin difference and show that such reparametrization cures the coordinate singularity that affected the previous formulation for the case of equal-mass binaries. The dynamics on the precession timescale is written down in closed form in both coprecessing and inertial frames. Radiation-reaction can then be introduced in a quasi-adiabatic fashion such that, at least for binaries on quasi-circular orbits, gravitational inspirals reduce to solving a single ordinary differential equation. We provide a broad review of the resulting phenomenology and re-write the relevant physics in terms of the newly adopted parametrization. This includes the spin-orbit resonances, the up-down instability, spin propagation at past time infinity, and new precession estimators to be used in gravitational-wave astronomy. Our findings are implemented in version 2 of the public Python module PRECESSION. Performing a precession-averaged post-Newtonian evolution from/to arbitrarily large separation takes ≲0.1\lesssim 0.1 s on a single off-the-shelf processor. This allows for a wide variety of applications including propagating gravitational-wave posterior samples as well as population-synthesis predictions of astrophysical nature.Comment: Code available at https://github.com/dgerosa/precessio

    Characterization of merging black holes with two precessing spins

    Get PDF
    Spin precession in merging black-hole binaries is a treasure trove for both astrophysics and fundamental physics. There are now well-established strategies to infer from gravitational-wave data whether at least one of the two black holes is precessing. In this paper we tackle the next-in-line target, namely the statistical assessment that the observed system has two precessing spins. We find that the recently-developed generalization of the effective precession spin parameter χp\chi_\mathrm{p} is a well-suited estimator to this task. With this estimator, the occurrence of two precessing spins is a necessary (though not sufficient) condition to obtain values 1<χp≤21<\chi_\mathrm{p}\leq 2. Confident measurements of gravitational-wave sources with χp\chi_\mathrm{p} values in this range can be taken as a conservative assessment that the binary presents two precessing spins. We investigate this argument using a large set of >100 software injections assuming anticipated LIGO/Virgo sensitivities for the upcoming fourth observing run, O4. Our results are very encouraging, suggesting that, if such binaries exist in nature and merge at a sufficient rate, current interferometers are likely to deliver the first confident detection of merging black holes with two precessing spins. We investigate prior effects and waveform systemics and, though these need to be better investigated, did not find any confident false-positive case among all the configurations we tested. Our assessment should thus be taken as conservative.Comment: 11 pages, 7 figures, 1 tabl

    Neuron Specific Rab4 Effector GRASP-1 Coordinates Membrane Specialization and Maturation of Recycling Endosomes

    Get PDF
    The endosomal pathway in neuronal dendrites is essential for membrane receptor trafficking and proper synaptic function and plasticity. However, the molecular mechanisms that organize specific endocytic trafficking routes are poorly understood. Here, we identify GRIP-associated protein-1 (GRASP-1) as a neuron-specific effector of Rab4 and key component of the molecular machinery that coordinates recycling endosome maturation in dendrites. We show that GRASP-1 is necessary for AMPA receptor recycling, maintenance of spine morphology, and synaptic plasticity. At the molecular level, GRASP-1 segregates Rab4 from EEA1/Neep21/Rab5-positive early endosomal membranes and coordinates the coupling to Rab11-labelled recycling endosomes by interacting with the endosomal SNARE syntaxin 13. We propose that GRASP-1 connects early and late recycling endosomal compartments by forming a molecular bridge between Rab-specific membrane domains and the endosomal SNARE machinery. The data uncover a new mechanism to achieve specificity and directionality in neuronal membrane receptor trafficking
    corecore