156 research outputs found
Profiling the proteoforms of urinary prostate-specific antigen by capillary electrophoresis-mass spectrometry
Early detection of prostate cancer may lead to the overdiagnosis and overtreatment of patients as well as missing significant cancers. The current diagnostic approach uses elevated serum concentrations of prostate-specific antigen (PSA) as an indicator of risk. However, this test has been widely criticized as it shows poor specificity and sensitivity. In order to improve early detection and diagnosis, several studies have investigated whether different PSA proteoforms are correlated to prostate cancer. Until now, studies and methodologies for the comprehensive characterization of PSA proteoforms from biofluids are scarce. For this purpose, we developed an intact protein assay to analyze PSA by capillary electrophoresis-electrospray ionization-mass spectrometry after affinity purification from patients? urine. Here, we determined six proteolytic cleavage variants. In regard to glycosylation, tri-, di-, mono- and non-sialylated complex-type N-glycans were found on non-cleaved PSA, as well as the non-glycosylated variant. The performance of the intact protein assay was assessed using a pooled sample, obtaining an inter-day variability of 15%. Furthermore, urinary patient samples were analyzed by intact protein analysis and a bottom-up approach (glycopeptide analysis). This combined approach revealed complimentary information on both levels, demonstrating the benefit of using two orthogonal techniques to provide a thorough profile of urinary PSA.Significance: The detection of clinically relevant prostate cancer requires a more specific and sensitive biomarker and, in this case, several PSA proteoforms may be able to aid or improve the current PSA test. However, a comprehensive analysis of the intact PSA proteoform profile is still lacking. This study investigated the PSA proteoforms present in urine and, in particular, determined the relative contribution of cleaved PSA and noncleaved PSA forms to the total glycosylation profile. Importantly, intact protein analysis did not require further sample treatment before being measured by CE-ESI-MS. Furthermore, its glycosylation was also assessed in a bottom-up approach to provide complementary information. Overall, these results represent an important basis for future characterization and biomarker studies.Proteomic
Utilization of multiparametric prostate magnetic resonance imaging in clinical practice and focal therapy: report from a Delphi consensus project
To codify the use of multiparametric magnetic resonance imaging (mpMRI) for the interrogation of prostate neoplasia (PCa) in clinical practice and focal therapy (FT). An international collaborative consensus project was undertaken using the Delphi method among experts in the field of PCa. An online questionnaire was presented in three consecutive rounds and modified each round based on the comments provided by the experts. Subsequently, a face-to-face meeting was held to discuss and finalize the consensus results. mpMRI should be performed in patients with prior negative biopsies if clinical suspicion remains, but not instead of the PSA test, nor as a stand-alone diagnostic tool or mpMRI-targeted biopsies only. It is not recommended to use a 1.5 Tesla MRI scanner without an endorectal or pelvic phased-array coil. mpMRI should be performed following standard biopsy-based PCa diagnosis in both the planning and follow-up of FT. If a lesion is seen, MRI-TRUS fusion biopsies should be performed for FT planning. Systematic biopsies are still required for FT planning in biopsy-naïve patients and for patients with residual PCa after FT. Standard repeat biopsies should be taken during the follow-up of FT. The final decision to perform FT should be based on histopathology. However, these consensus statements may differ for expert centers versus non-expert centers. The mpMRI is an important tool for characterizing and targeting PCa in clinical practice and FT. Standardization of acquisition and reading should be the main priority to guarantee consistent mpMRI quality throughout the urological communit
Phase 1 study of chemoradiotherapy combined with nivolumab +/- Ipilimumab for the curative treatment of muscle-invasive bladder cancer
Background: Muscle-invasive bladder cancer (MIBC) has a poor prognosis. Chemoradiotherapy (CRT) in selected patients has comparable results to radical cystectomy. Results of neoadjuvant immune checkpoint inhibitors (ICIs) before radical cystectomy are promising. We hypothesize that ICI concurrent to CRT (iCRT) is safe and may improve treatment outcomes. Objective: To determine the safety of iCRT for MIBC. Design, setting, and participants: This multicenter, phase 1b, open-label, dose-escalation study determined the safety of CRT with three ICI regimens in patients with nonmetastatic (T2-4aN0-1) MIBC. Twenty-six patients received mitomycin C/capecitabine and 20 x 2.75 Gy to the bladder. Tolerability was evaluated in a cohort of up to ten patients. If two or fewer out of the first six patients or three or fewer of ten patients experienced dose-limiting toxicity (DLT), accrual continued in the next cohort. Intervention: Patients received nivolumab 480 mg (NIVO480), nivolumab 3 mg/kg and ipilimumab 1 mg/kg (NIVO3 + IPI1), or nivolumab 1 mg/kg and ipilimumab 3 mg/kg (IPI3 + NIVO1). Outcome measurements and statistical analysis: The primary endpoint was safety. Secondary objectives were response rate, disease-free survival, metastatic-free survival (MFS), and overall survival (OS). Results and limitations: In the NIVO480 cohort, no patients experienced DLT. The NIVO3 + IPI1 2 patients experienced DLT, thrombocytopenia (grade 4), and asystole (grade 5). IPI3 + NIVO1 was discontinued after three out of six patients experienced DLT. Clinically significant adverse events (AEs) of grade >= 3 occurred in zero, three, and five patients in the NIVO480, NIVO3 + IPI1, and IPI3 + NIVO1 groups, respectively. The most common AEs were immune related and gastrointestinal. MFS and OS were 90% at 2 yr for NIVO480 and 90% at 1 yr for NIVO3 + IPI1. Limitations include the absence of a centralized pathology and radiology review, and a lack of biomarker analysis. Conclusions: In this dose-finding study of iCRT, the regimens of nivolumab monotherapy and nivolumab 3 mg/kg with ipilimumab 1 mg/kg have acceptable toxicity. Patient summary: We tested the safety of a new bladder-sparing treatment modality for muscle-invasive bladder cancer patients, combiningimmunecheckpoint inhibitors simultaneously with chemoradiotherapy. We report that two regimens, nivolumab monotherapy and nivolumab 3 mg/kg with ipilimumab 1 mg/kg, are safe and can be used in phase 3 trials
Standardization of definitions in focal therapy of prostate cancer: report from a Delphi consensus project
Purpose: To reach standardized terminology in focal therapy (FT) for prostate cancer (PCa).
Methods: A four-stage modified Delphi consensus project was undertaken among a panel of international experts in the field of FT for PCa. Data on terminology in FT was collected from the panel by three rounds of online questionnaires. During a face-to-face meeting on June 21, 2015, attended by 38 experts, all data from the online rounds were reviewed and recommendations for definitions were formulated.
Results: Consensus was attained on 23 of 27 topics; Targeted FT was defined as a lesion-based treatment strategy, treating all identified significant cancer foci; FT was generically defined as an anatomy-based (zonal) treatment strategy. Treatment failure due to the ablative energy inadequately destroying treated tissue is defined as ablation failure. In targeting failure the energy is not adequately applied to the tumor spatially and selection failure occurs when a patient was wrongfully selected for FT. No definition of biochemical recurrence can be recommended based on the current data. Important definitions for outcome measures are potency (minimum IIEF-5 score of 21), incontinence (new need for pads or leakage) and deterioration in urinary function (increase in IPSS >5 points). No agreement on the best quality of life tool was established, but UCLA-EPIC and EORTC-QLQ-30 were most commonly supported by the experts. A complete overview of statements is presented in the text.
Conclusion: Focal therapy is an emerging field of PCa therapeutics. Standardization of definitions helps to create comparable research results and facilitate clear communication in clinical practice
Outcomes of CEM43 in Predicting Thermal Damage Induced by Focal Laser Ablation in Controlled Ex Vivo Experiments: A Comparison to Histology and MRI
BACKGROUND: Focal laser ablation (FLA) serves as a targeted therapy for prostate cancer (PCa). Clinical studies have demonstrated significant variations in ablation volumes with consistent fiber configurations. Consequently, a prediction model is needed for the safe application of FLA in treating PCa. OBJECTIVE: This study aimed to evaluate the reproducibility of FLA-induced temperature profiles in controlled ex vivo experiments using clinical laser treatment protocols. Additionally, it sought to examine the effectiveness of the CEM43 model in predicting the zone of irreversible damage (ZID) and to compare these findings with outcomes derived from the Arrhenius model. METHODS: Freshly excised postmortem human prostate and porcine liver specimens were used for controlled ex vivo ablation. Tissues were secured in a Perspex sample holder for precise placement of the laser fiber and thermocouples. FLA was conducted with a 1064-nm Nd:YAG laser at 3 W in continuous-wave mode for 10 min. Pre- and post-FLA 3D T1-weighted 7 T MRI scans were obtained to assess the treatment area. Whole-mount hematoxylin and eosin histological slides were prepared and digitized. On histology, the ZID was defined as the total of vaporized, carbonized, and coagulated tissue. A 2D thermal development map was created from temperature data, using bi-cubic interpolation. The cumulative equivalent thermal isoeffect dose at 43°C in minutes (CEM43) model was applied to predict the ZID, with 240 equivalent minutes (240-CEM43) used as the damage threshold. Additionally, the Arrhenius thermal model was used for comparison of CEM43 results. Predicted ZIDs were compared to MRI and histology. RESULTS: FLA treatment was performed on ex vivo human prostate samples (n = 2) and porcine liver specimens (n = 5). For human prostate tissue, FLA did not result in an identifiable ZID upon histological macroscopic examination or a lesion on MRI. Ex vivo porcine liver samples showed a clearly demarcated oval-shaped hyperintense lesion surrounding the laser fiber tip on post-FLA MRI. The MRI lesion (range 1.6-2.1 cm 2) corresponded with the shape and location of the ZID on histology, but was smaller (median 1.7 vs. 3.2, p = 0.02). Histological examination of porcine liver samples revealed ZIDs ranging from 2.1 to 4.1 cm 2, whereas 240-CEM43-predicted ZIDs ranged from 3.3 to 3.8 cm 2. Although the median 240-CEM43-predicted ZID was not significantly larger than the histology ZID (3.8 vs. 3.2 cm 2, p = 0.22), it tended to overpredict the histological results in most experiments. The median Arrhenius-predicted ZID was similar to the histological ZID (3.2 vs. 3.2 cm 2, p = 0.56), but varied in size when comparing individual experiments (range 2.5-3.2 cm 2). CONCLUSION: FLA on ex vivo human prostate showed no thermal damage on histopathology or MRI. Ex vivo porcine liver FLA resulted in identifiable ZID on histology and lesions on MRI. 240-CEM43 generally overestimated the ZID and had less variability compared to histology. Results from the Arrhenius model were in better agreement with the histology findings, but still did not predict the individual FLA-induced histological thermal damage. Inter-experiment ZID variability underlines the need for developing a more comprehensive predictive dosimetry model for FLA in PCa treatment
Management of patients who opt for radical prostatectomy during the COVID‐19 pandemic: An International Accelerated Consensus Statement
BACKGROUND: Coronavirus disease-19 (COVID-19) pandemic caused delays in definitive treatment of patients with prostate cancer. Beyond the immediate delay a backlog for future patients is expected. Such delays can lead to disease progression. OBJECTIVE: We aimed to develop guidance on criteria for prioritization for surgery and reconfiguring management pathways for non-metastatic stage of prostate cancer who opt for surgical treatment. A second aim was to identify the infection prevention and control (IPC) measures to achieve low likelihood of COVID-19 hazard if radical prostatectomy was to be carried out during the outbreak and whilst the disease is endemic. DESIGN, SETTING AND PARTICIPANTS: An accelerated consensus process and systematic review. We conducted a systematic review of the evidence on COVID-19 and reviewed international guidance on prostate cancer. These were presented to an international prostate cancer expert panel (n=34) through an online meeting. The consensus process underwent three rounds of survey in total. Additions to the second- and third-round surveys were formulated based on the answers and comments from the previous rounds. OUTCOME MEASURES: Consensus opinion was defined as ≥80% agreement, which were used to reconfigure the prostate cancer pathways. RESULTS: Evidence on the delayed management of patients with prostate cancer is scarce. There was 100% agreement that prostate cancer pathways should be reconfigured and develop measures to prevent nosocomial COVID-19 for patients treated surgically. Consensus was reached on prioritization criteria of patients for surgery and management pathways for those who have delayed treatment. IPC measures to achieve a low likelihood of nosocomial COVID-19 were coined as "COVID-19 cold sites". CONCLUSION: Re-configuring management pathways for prostate cancer patients is recommended if significant delay (>3-6 months) in surgical management is unavoidable. The mapped pathways provide guidance for such patients. The IPC processes proposed provide a framework for providing radical prostatectomy within an environment with low COVID-19 risk during the outbreak or when the disease remains endemic. The broader concepts could be adapted to other indications beyond prostate cancer surgery
Local Failure Events in Prostate Cancer Treated with Radiotherapy: A Pooled Analysis of 18 Randomized Trials from the Meta-analysis of Randomized Trials in Cancer of the Prostate Consortium (LEVIATHAN).
CONTEXT: The prognostic importance of local failure after definitive radiotherapy (RT) in National Comprehensive Cancer Network intermediate- and high-risk prostate cancer (PCa) patients remains unclear. OBJECTIVE: To evaluate the prognostic impact of local failure and the kinetics of distant metastasis following RT. EVIDENCE ACQUISITION: A pooled analysis was performed on individual patient data of 12 533 PCa (6288 high-risk and 6245 intermediate-risk) patients enrolled in 18 randomized trials (conducted between 1985 and 2015) within the Meta-analysis of Randomized Trials in Cancer of the Prostate Consortium. Multivariable Cox proportional hazard (PH) models were developed to evaluate the relationship between overall survival (OS), PCa-specific survival (PCSS), distant metastasis-free survival (DMFS), and local failure as a time-dependent covariate. Markov PH models were developed to evaluate the impact of specific transition states. EVIDENCE SYNTHESIS: The median follow-up was 11 yr. There were 795 (13%) local failure events and 1288 (21%) distant metastases for high-risk patients and 449 (7.2%) and 451 (7.2%) for intermediate-risk patients, respectively. For both groups, 81% of distant metastases developed from a clinically relapse-free state (cRF state). Local failure was significantly associated with OS (hazard ratio [HR] 1.17, 95% confidence interval [CI] 1.06-1.30), PCSS (HR 2.02, 95% CI 1.75-2.33), and DMFS (HR 1.94, 95% CI 1.75-2.15, p < 0.01 for all) in high-risk patients. Local failure was also significantly associated with DMFS (HR 1.57, 95% CI 1.36-1.81) but not with OS in intermediate-risk patients. Patients without local failure had a significantly lower HR of transitioning to a PCa-specific death state than those who had local failure (HR 0.32, 95% CI 0.21-0.50, p < 0.001). At later time points, more distant metastases emerged after a local failure event for both groups. CONCLUSIONS: Local failure is an independent prognosticator of OS, PCSS, and DMFS in high-risk and of DMFS in intermediate-risk PCa. Distant metastasis predominantly developed from the cRF state, underscoring the importance of addressing occult microscopic disease. However a "second wave" of distant metastases occurs subsequent to local failure events, and optimization of local control may reduce the risk of distant metastasis. PATIENT SUMMARY: Among men receiving definitive radiation therapy for high- and intermediate-risk prostate cancer, about 10% experience local recurrence, and they are at significantly increased risks of further disease progression. About 80% of patients who develop distant metastasis do not have a detectable local recurrence preceding it
Mycobacterium phlei cell wall complex directly induces apoptosis in human bladder cancer cells
Intact mycobacteria and mycobacterial cell wall extracts have been shown to inhibit the growth of human and murine bladder cancer. Their mechanism of action is, however, poorly understood. Mycobacterium phlei mycobacterial cell complex (MCC) is a cell wall preparation that has mycobacterial DNA in the form of short oligonucleotides complexed on the cell wall surface. In this study, we have investigated the possibility that MCC has anti-cancer activity that is mediated by two different mechanisms – a direct effect on cancer cell proliferation and viability and an indirect effect mediated by the production of interleukin 12 (IL-12), a cytokine known to possess anti-cancer activity. We have found that, although MCC is a potent inducer of IL-12 and IL-6 synthesis in monocytes and macrophages either in vitro or in vivo, it is unable to induce the synthesis of either IL-12, IL-6 or granulocyte–macrophage colony-stimulating factor (GM-CSF) by the human transitional bladder cancer cell lines HT-1197 and HT-1376. MCC is not directly cytotoxic towards these cancer cells, but induces apoptosis as determined by nuclear DNA fragmentation and by the release of nuclear mitotic apparatus protein. Mycobacterium phlei DNA associated with MCC is responsible for the induction of apoptosis. Our results indicate that MCC directly effects bladder cancer cells by inhibiting cellular proliferation through the induction of apoptosis, and has the potential for an indirect anti-cancer activity by stimulating cancer-infiltrating monocytes/macrophages to synthesize IL-12. © 1999 Cancer Research Campaig
- …