3 research outputs found

    Mechanical Properties Of Stored Red Blood Cells Using Optical Tweezers

    Get PDF
    We have developed a method for measuring the red blood cell (RBC) membrane overall elasticity μ by measuring the deformation of the cells when dragged at a constant velocity through a plasma fluid by an optical tweezers. The deformability of erythrocytes is a critical determinant of blood flow in the microcirculation. We tested our method and hydrodynamic models, which included the presence of two walls, by measuring the RBC deformation as a function of drag velocity and of the distance to the walls. The capability and sensitivity of this method can be evaluated by its application to a variety of studies, such as, the measurement of RBC elasticity of sickle cell anemia patients comparing homozygous (HbSS), including patients taking hydroxyrea (HU) and heterozygous (HbAS) with normal donors and the RBC elasticity measurement of gamma irradiated stored blood for transfusion to immunosupressed patients as a function of time and dose. These studies show that the technique has the sensitivity to discriminate heterozygous and homozygous sickle cell anemia patients from normal donors and even follow the course of HU treatment of Homozygous patients. The gamma irradiation studies show that there is no significant change in RBC elasticity over time for up to 14 days of storage, regardless of whether the unit was irradiated or not, but there was a huge change in the measured elasticity for the RBC units stored for more than 21 days after irradiation. These finds are important for the assessment of stored irradiated RBC viability for transfusion purposes because the present protocol consider 28 storage days after irradiation as the limit for the RBC usage.593016Ashkin, A., Dziedzic, J.M., Optical trapping and manipulation of viruses and bacteria (1987) Science, 235, pp. 1517-1520Barjas-Castro, M.L., Brandão, M.M., Fontes, A., Costa, F.F., Cesar, C.L., Saad, S.T.O., Elastic properties of irradiated red blood cell units measured by optical tweezer (2002) Transfusion, 42, pp. 1196-1199Brandão, M.M., Fontes, A., Barjas-Castro, M.L., Barbosa, L.C., Costa, F.F., Cesar, C.L., Saad, S.T.O., Optical tweezers for measuring red blood cell elasticity: Application to the study of drug response in sickle cell disease (2003) European Journal of Haematology, 70, pp. 207-211Williamson, L.M., Warwick, R.M., Transfusion-associated graft-versus-host disease and its prevention (1995) Blood Rev., 9, pp. 251-261Button, L.N., Dewolf, W.C., Newburger, P.E., The effecr of irradiation on blood components (1981) Transfusion, 21, pp. 419-426Platt, O.S., The sickle syndrome (1995) Blood: Principles and Practice of Hematology, , R. I Hadlin, S. E. Lux, T. P. Stossel, J. B. Lippincott, PhiladelphiaBallas, S.K., Dover, G.J., Charache, S., Effect of hydroxyurea on the rheological properties of sickle erythrocytes in vivo (1989) Am. J. Hematol, 32, pp. 104-111Groner, W., Mohandas, N., Bessis, M., New optical technique for measuring erythrocyte deformability with the ektacytometer (1980) Clin. Chem., 26, pp. 1435-1442De Franceschi, L., Bachir, D., Galacteros, F., Tchernia, G., Cynober, T., Alper, S., Platt, O., Brugnara, C., Oral magnesium supplements reduce erythrocyte dehydration in patients with sickle cell disease (1997) J Clin Invest, 100, pp. 1847-1852Hochmuth, R.M., Worthy, P.R., Evans, E.A., Red cell extensional recovery and the determination of membrane viscosity (1979) Biophys. J., 26, pp. 101-114Evans, E.A., La Celle, P.L., Intrinsic material properties of the erythrocyte membrane indicated by mechanical analysis of deformation (1975) Blood, 45, pp. 29-43Itoh, T., Chien, S., Usami, S., Effects of hemoglobin concentration on deformability of individual sickle cells after deoxygenation (1995) Blood, 85, pp. 2245-2253Evans, E.A., Mohandas, N., Membrane-associated sickle hemoglobin: A major determinant of sickle erythrocyte rigidity (1987) Blood, 70, pp. 1443-1449Dong, C., Chadwick, R.S., Schechter, A.N., Influence of sickle hemoglobin polymerization and membrane properties on deformability of sickle erythrocytes in the microcirculation (1992) Biophys. J., 63, pp. 774-783Suzuki, Y., Tateishi, N., Cicha, I., Decreased deformability of the X-ray irradiated red blood cells stored in manitol-adenine-phosphate medium (2000) Clin. Hemorheol. Micro-cire., 22, pp. 131-14

    Studying Taxis In Real Time Using Optical Tweezers: Applications For Leishmania Amazonensis Parasites

    No full text
    Beads trapped by an optical tweezers can be used as a force transducer for measuring forces of the same order of magnitude as typical forces induced by flagellar motion. We used an optical tweezers to study chemotaxis by observing the force response of a flagellated microorganism when placed in a gradient of attractive chemical substances. This report shows such observations for Leishmania amazonensis, responsible for leishmaniasis, a serious disease. We quantified the movement of this protozoan for different gradients of glucose. We were able to observe both the strength and the directionality of the force. The characterization of the chemotaxis of these parasites can help to understand the mechanics of infection and improve the treatments employed for this disease. This methodology can be used to quantitatively study the taxis of any kind of flagellated microorganisms under concentration gradients of different chemical substances, or even other types of variable gradients such as temperature and pressure. © 2009 Elsevier Ltd. All rights reserved.405-6617620Adler, J., A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli (1973) J. Gen. Microbiol., 74, pp. 77-91Allersma, M.W., Gittes, F., de Castro, M.J., Stewart, R.J., Schmidt, C.F., Two-dimensional tracking of ncd motility by back focal plane interferometry (1998) Biophys. J., 74, pp. 1074-1085Ashkin, A., Dziedzic, J., Bjorkholm, J., Chu, S., Observation of a single-beam gradient force optical trap for dielectric particles (1986) Opt. Lett., 11, pp. 288-290Barros, V.C., Oliveira, J.S., Melo, M.N., Gontijo, N.F., Leishmania amazonensis: chemotaxic and osmotaxic responses in promastigotes and their probable role in development in the phlebotomine gut (2006) Exp. Parasitol., 112, pp. 152-157Blair, D.F., How bacteria sense and swim (1999) Annu. Rev. Microbiol., 49, pp. 489-522Bleul, C.C., Farzan, M., Choe, H., Parolin, C., Clark-Lewis, I., Sodroski, J., Springer, T.A., The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry (1996) Nature, 382, pp. 829-833Bray, R.S., Leishmaniachemotaxic responses of promastigotes and macrophages in vitro (1983) J. Protozool., 30, pp. 322-329Bustamante, C., Bryant, Z., Smith, S.B., Ten years of tension: single-molecule DNA mechanics (2003) Nature, 421, pp. 423-427Fontes, A., Giorgio, S., de Castro Jr., A.B., Neto, V.M., Pozzo, L.Y., Marques, G.P., Barbosa, L.C., Cesar, C.L., Determination of femtonewton forces and fluid viscosity using optical tweezers: application to Leishmania amazonensis (2005) Proc. SPIE, 5699, pp. 419-425Gittes, F., Schmidt, C.F., Interference model for back-focal-plane displacement detection in optical tweezers (1998) Opt. Lett., 23, pp. 7-9Gontijo, B., Carvalho, M.L.R., Leishmaniose tegumentar Americana (2003) Rev. Soc. Bras. Med. Trop., 36, pp. 71-80Handman, E., Cell biology of Leishmania (2000) Adv. Parasitol., 44, pp. 1-39Khan, S., Jain, S., Reid, G.P., Trentham, D.R., The fast tumble signal in bacterial chemotaxis (2004) Biophys. J., 86, pp. 4049-4058Law, A.M.J., Aitken, M.D., Continuous-flow capillary assay for measuring bacterial chemotaxis (2005) Appl. Environ. Microbiol., 71, pp. 3137-3143Leslie, G., Barrett, M., Burchmore, R., Leishmania mexicana: promastigotes migrate through osmotic gradients (2002) Exp. Parasitol., 102, pp. 117-120Nagasawa, T., Hirota, S., Tachibana, K., Takakura, N., Nishikawa, S., Kitamura, Y., Yoshida, N., Kishimoto, T., Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1 (1996) Nature, 382, pp. 635-638Nelson, R.D., Quie, P.G., Simmons, R.L., Chemotaxis under agarose-new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leukocytes and monocytes (1975) J. Immunol., 115, pp. 1650-1656Neuman, K.C., Chadd, E.H., Liou, G.F., Bergman, K., Block, S.M., Characterization of photodamage to Escherichia coli in optical traps (1999) Biophys. J., 77, pp. 2856-2863Pfeffer, W., (1888) Unters. Botan. Inst. Tubingen, 2, pp. 582-661Rao, C.V., Glekas, G.D., Ordal, G.W., The three adaptation systems of Bacillus subtilis chemotaxis (2008) Trends Microbiol., 16, pp. 480-487Rice, S.E., Purcell, T.J., Spudich, J.A., Building and using optical traps to study properties of molecular motors (2003) Biophotonics, 361, pp. 112-133Rohrbach, A., Stelzer, E.H.K., Three-dimensional position detection of optically trapped dielectric particles (2002) J. Appl. Phys., 91, pp. 5474-5488World Health Organization, (2002) Annex 3: Burden of Disease in DALYs by Cause, Sex and Mortality Stratum in WHO Regions, Estimates for 2001. The World Health report, , WHO, Geneva pp. 192-19

    Optical Tweezers For Studying Taxis In Parasites

    No full text
    In this work we present a methodology to measure force strengths and directions of living parasites with an optical tweezers setup. These measurements were used to study the parasites chemotaxis in real time. We observed behavior and measured the force of: (i)Leishmania amazonensis in the presence of two glucose gradients; (ii)Trypanosoma cruzi in the vicinity of the digestive system walls, and (iii)Trypanosoma rangeli in the vicinity of salivary glands as a function of distance. Our results clearly show a chemotactic behavior in every case. This methodology can be used to study any type of taxis, such as chemotaxis, osmotaxis, thermotaxis, phototaxis, of any kind of living microorganisms. These studies can help us to understand the microorganism sensory systems and their response function to these gradients. © 2011 IOP Publishing Ltd.134DPDx-Trypanosomiasis, American. Fact Sheet. Centers for Disease Control (CDC). Retrieved 2008-09-11(2002), WHO, World Health OrganizationGrisard, E.C., Moraes, M.H., Guarneri, A.A., Girardi, F.P., Rodrigues, J.B., Eger-Mangrich, I., Tyler, K.M., Steindel, M., Different serological cross-reactivity of Trypanosoma rangeli forms in Trypanosoma cruzi-infected patients sera (2008) Parasites Vectors, 1 (1), p. 20Bagorda, A., Parent, C.A., Eukaryotic chemotaxis at a glance (2008) J. Cell Sci., 121 (16), pp. 2621-2624Teves, M.E., Guidobaldi, H.A., Ũates, D.R., Sanchez, R., Miska, W., Publicover, S.J., Morales Garcia, A.A., Giojalas, L.C., Molecular mechanism for human sperm chemotaxis mediated by progesterone (2009) PLoS ONE, 4 (12), p. 8211Snchez, R., Seplveda, C., Risopatrón, J., Villegas, J., Giojalas, L.C., Human sperm chemotaxis depends on critical levels of reactive oxygen species (2010) Fertil Steril., 93 (1), pp. 150-153Wu, J.Y., Feng, L., Park, H.-T., Havlioglu, N., Wen, L., Tang, H., Bacon, K.B., Rao, Y., The neuronal repellent Slit inhibits leukocyte chemotaxis induced by chemotactic factors (2001) Nature, 410 (6831), pp. 948-952. , DOI 10.1038/35073616Zheng, M., Sun, G., Cai, S., Mueller, R., Mrowietz, U., Significant reduction of T-cell chemotaxis to MCP-1 in patients with primary and metastatic melanoma (1999) Chin. Med. J. (Engl.), 112, pp. 493-496Kohidai, L., Chemotaxis: The proper physiological response to evaluate phylogeny of signal molecules (1999) Acta Biologica Hungarica, 50 (4), pp. 375-394Law, A.M.J., Aitken, M.D., Continuous-flow capillary assay for measuring bacterial chemotaxis (2005) Applied and Environmental Microbiology, 71 (6), pp. 3137-3143. , DOI 10.1128/AEM.71.6.3137-3143.2005Khan, S., Jain, S., Reid, G.P., Trentham, D.R., The fast tumble signal in bacterial chemotaxis (2004) Biophysical Journal, 86 (6), pp. 4049-4058. , DOI 10.1529/biophysj.103.033043Neuman, K.C., Chadd, E.H., Liou, G.F., Bergman, K., Block, S.M., Characterization of photodamage to Escherichia coli in optical traps (1999) Biophysical Journal, 77 (5), pp. 2856-2863Bleul, C.C., Farzan, M., Choe, H., Parolin, C., Clark-Lewis, I., Sodroski, J., Springer, T.A., The lymphocyte chemoattractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry (1996) Nature, 382 (6594), pp. 829-833. , DOI 10.1038/382829a0Nagasawa, T., Hirota, S., Tachibana, K., Takakura, N., Nishikawa, S.-I., Kitamura, Y., Yoshida, N., Kishimoto, T., Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1 (1996) Nature, 382 (6592), pp. 635-638. , DOI 10.1038/382635a0Nelson, R.D., Quie, P.G., Simmons, R.L., Chemotaxis under agarose-new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leukocytes and monocytes (1975) J. Immunol., 115, pp. 1650-1656Blair, D.F., How bacteria sense and swim (1999) Annu. Rev. Microbiol., 49 (1), pp. 489-522Rao, C.V., Glekas, G.D., Ordal, G.W., The three adaptation systems of Bacillus subtilis chemotaxis (2008) Trends Microbiol., 16 (10), pp. 480-487Barros, V.C., Oliveira, J.S., Melo, M.N., Gontijo, N.F., Leishmania amazonensis: Chemotaxic and osmotaxic responses in promastigotes and their probable role in development in the phlebotomine gut (2006) Experimental Parasitology, 112 (3), pp. 152-157. , DOI 10.1016/j.exppara.2005.10.005, PII S0014489405002572Pfeffer, W., (1888) Unters. Botan. Inst. Tubingen, 2, pp. 582-661Adler, J., A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli (1973) J. Gen. Microbiol., 74, pp. 77-91Pozzo, L.Y., Fontes, A., De Thomaz, A.A., Santos, B.S., Farias, P.M., Ayres, D.C., Giorgio, S., Cesar, C.L., Studying taxis in real time using optical tweezers: Applications for Leishmania amazonensis parasites (2009) Micron, 40 (5-6), pp. 617-620Chagas, C., Nova tripanosomiase humana (1909) Mem. Inst. Oswaldo Cruz., 1, pp. 1-62Nogueira, N.F.S., Gonzales, M., Garcia, E.M., De Souza, W., Effect of azadirachtin A on the fine structure of the midgut of Rhodnius prolixus (1997) Journal of Invertebrate Pathology, 69 (1), pp. 58-63Gonzalez, M.S., Hamedi, A., Albuquerque-Cunha, J.M., Nogueira, N.F.S., De Souza, W., Ratcliffe, N.A., Azambuja, P., Mello, C.B., Antiserum against perimicrovillar membranes and midgut tissue reduces the development of Trypanosoma cruzi in the insect vector, Rhodnius prolixus (2006) Experimental Parasitology, 114 (4), pp. 297-304. , DOI 10.1016/j.exppara.2006.04.009, PII S0014489406001044Alves, C.R., Albuquerque-Cunha, J.M., Mello, C.B., Garcia, E.S., Nogueira, N.F., Bourguingnon, S.C., De Souza, W., Gonzalez, M.S., Trypanosoma cruzi: Attachment to perimicrovillar membrane glycoproteins of Rhodnius prolixus (2007) Experimental Parasitology, 116 (1), pp. 44-52. , DOI 10.1016/j.exppara.2006.11.012, PII S0014489406003171Gomes, S.A.O., Souza, A.L.F., Kiffer, T.M., Dick, C.F., Santos, A.L.A., Meyer-Fernandes, J.R., Ecto-phosphatase activity on the external surface of Rhodnius prolixus salivary glands: Modulation by carbohydrates and Trypanosoma rangeli (2008) Acta Trop., 106 (2), pp. 137-142Vallejo, G.A., Guhl, F., Schaub, G.A., Triatominae-Trypanosoma cruzi/T. rangeli: Vector-parasite interactions (2009) Acta Trop., 110 (2-3), pp. 137-147Happel, J., Brenner, H., (1991) Low Reynolds Number Hydrodynamics with Special Applications to Particulate Media(1971) Handbook of Chemistry and PhysicsDe Thomaz, A.A., Optical tweezers force measurements to study parasites chemotaxis (2009) Proc. SPIE, 7367, pp. 73671
    corecore