371 research outputs found

    Constraints on Cold H_2 Clouds from Gravitational Microlensing Searches

    Get PDF
    It has been proposed that the Galaxy might contain a population of cold clouds in numbers sufficient to account for a substantial fraction of the total mass of the Galaxy. These clouds would have masses of the order of 10^{-3} Solar mass and sizes of the order of 10 AU. We consider here the lensing effects of such clouds on the light from background stars. A semianalytical formalism for calculation of the magnification event rate produced by such gaseous lensing is developed, taking into account the spatial distribution of the dark matter in the Galaxy, the velocity distribution of the lensing clouds and source stars, and motion of the observer. Event rates are calculated for the case of gaseous lensing of stars in the Large Magellanic Cloud and results are directly compared with the results of the search for gravitational microlensing events undertaken by the MACHO collaboration. The MACHO experiment strongly constrains the properties of the proposed molecular clouds, but does not completely rule them out. Future monitoring programs will either detect or more strongly constrain this proposed population.Comment: 36 pages, 9 figures, 1 table, typos corrected, minor change

    Gamma ray astronomy and baryonic dark matter

    Get PDF
    Recently, Dixon et al. have re-analyzed the EGRET data, finding a statistically significant diffuse Îł\gamma-ray emission from the galactic halo. We show that this emission can naturally be explained within a previously-proposed model for baryonic dark matter, in which Îł\gamma-rays are produced through the interaction of high-energy cosmic-ray protons with cold H2H_2 clouds clumped into dark clusters - these dark clusters supposedly populate the outer galactic halo and can show up in microlensing observations. Our estimate for the halo Îł\gamma-ray flux turns out to be in remarkably good agreement with the discovery by Dixon et al. We also address future prospects to test our predictions.Comment: 9 pages, 1 figure included, to appear in ApJ 510, L103 (1999

    Hyperglycemia selectively increases the expression of cycloxygenase-2 in human aortic endothelial cells

    Get PDF
    The conversion of arachidonic acid to vasoactive prostanoids including prostacyclin, prostaglandins and tromboxanes is mediated by cycloxygenase (COX). Two isoforms of enzyme have been shown: a constitutive (COX-1) and an inducible form (COX-2). Products of the arachidonic acid metabolism may be involved in the impairment of endothelium-dependent vasodilatation observed both in experimental models and in patients with diabetes mellitus. To determine the effect of hyperglycemia on COX-1 and COX-2 expression, human aortic endothelial cells (HAEC) were exposed to normal (5.5mM) and high (22.2mM) concentrations of glucose for 5 days. Cells were also treated with mannitol (22.2 mM) to rule out an effect due to osmolality changes. COX-1 and COX-2 mRNA and protein expressions were analyzed by Southern and Western blotting, respectively. Treatment with high glucose was associated with a two-fold increase of both COX-2 mRNA (P<0.05) and protein levels (P<0.05), whereas no changes were observed for COX-1. Moreover high concentration of mannitol did not exert any significant effect. The present study demonstrates that both isoforms of COX are normally expressed in HAEC, but only COX-2 was stimulated after exposure to high glucose. The results of the present study may provide molecular basis to understand hyperglycemia-induced endothelial dysfunctio

    Prevalence and Properties of Dark Matter in Elliptical Galaxies

    Get PDF
    Given the recently deduced relationship between X-ray temperatures and stellar velocity dispersions (the "T-sigma relation") in an optically complete sample of elliptical galaxies (Davis & White 1996), we demonstrate that L>L_* ellipticals contain substantial amounts of dark matter in general. We present constraints on the dark matter scale length and on the dark-to-luminous mass ratio within the optical half-light radius and within the entire galaxy. For example, we find that minimum values of dark matter core radii scale as r_dm > 4(L_V/3L_*)^{3/4}h^{-1}_80 kpc and that the minimum dark matter mass fraction is >~20% within one optical effective radius r_e and is >~39-85% within 6r_e, depending on the stellar density profile and observed value of beta_spec. We also confirm the prediction of Davis & White (1996) that the dark matter is characterized by velocity dispersions that are greater than those of the luminous stars: sigma_dm^2 ~ 1.4-2 sigma_*^2. The T-sigma relation implies a nearly constant mass-to-light ratio within six half-light radii: M/L_V ~ 25h_80 M_sun/L_V_sun. This conflicts with the simplest extension of CDM theories of large scale structure formation to galactic scales; we consider a couple of modifications which can better account for the observed T-sigma relation.Comment: 27 pages AASTeX; 15 PostScript figures; to appear in Ap

    CMB as a possible new tool to study the dark baryons in galaxies

    Full text link
    Baryons constitute about 4% of our universe, but most of them are missing and we do not know where and in what form they are hidden. This constitute the so-called missing baryon problem. A possibility is that part of these baryons are hidden in galactic halos. We show how the 7-year data obtained by the WMAP satellite may be used to trace the halo of the nearby giant spiral galaxy M31. We detect a temperature asymmetry in the M31 halo along the rotation direction up to about 120 kpc. This could be the first detection of a galactic halo in microwaves and may open a new way to probe hidden baryons in these relatively less studied galactic objects using high accuracy CMB measurements.Comment: 8 pages, presented at the III Italian-Pakistani Workshop on Relativistic Astrophysics, Lecce, June 20-22, 2011; to be published in Journal of Physics: Conference Serie

    A Pressure Anomaly for HII Regions in Irregular Galaxies

    Get PDF
    The pressures of giant HII regions in 6 dwarf Irregular galaxies are a factor of ~10 larger than the average pressures of the corresponding galaxy disks, obtained from the stellar and gaseous column densities. Either the visible HII regions in these dwarfs are all so young that they are still expanding, or there is an unexpected source of disk self-gravity that increases the background pressure. We consider the possibility that the additional self-gravity comes from disk dark matter, but suggest this is unlikely because the vertical scale heights inferred for Irregular galaxies are consistent with the luminous matter alone. Some of the HII region overpressure is probably the result of local peaks in the gravitational field that come from large gas concentrations, many of which are observed directly. These peaks also explain the anomalously low average column density thresholds for star formation that were found earlier for Irregular galaxies, and they permit the existence of a cool HI phase as the first step toward dense molecular cores. Many of the HII regions could also be so strongly over-pressured that they will expand for a long time. In this case, the observed population would be only 7% of the total, and the aging HII regions, now too faint to see, should occupy nearly the entire dwarf galaxy volume. Such prolonged HII region expansion would explain the origin of the giant HI shells that are seen in these galaxies, and account for the lack of bright central clusters inside these shells.Comment: 27 pages, 4 figures, Astrophysical Journal, 540, Sep 10, 2000, in pres

    Slott-Agape Project

    Full text link
    SLOTT-AGAPE (Systematic Lensing Observation at Toppo Telescope - Andromeda Gravitational Amplification Pixel Lensing Experiment) is a new collaboration project among international partners from England, France, Germany, Italy and Switzerland that intends to perform microlensing observation by using M31 as target. The MACHOs search is made thanks to the pixel lensing technique.Comment: 4 pages, 2 figures, proceeding of XLIII Congresso della Societa' Astronomica Italiana, Napoli, 4-8 Maggio, 199

    Probing the mass function of halo dark matter via microlensing

    Get PDF
    The simplest interpretation of the microlensing events observed towards the Large Magellanic Clouds is that approximately half of the mass of the Milky Way halo is in the form of MAssive Compact Halo Objects with M∌0.5M⊙M \sim 0.5 M_{\odot}. It is not possible, due to limits from star counts and chemical abundance arguments, for faint stars or white dwarves to comprise such a large fraction of the halo mass. This leads to the consideration of more exotic lens candidates, such as primordial black holes, or alternative lens locations. If the lenses are located in the halo of the Milky Way, then constraining their mass function will shed light on their nature. Using the current microlensing data we find, for four halo models, the best fit parameters for delta-function, primordial black hole and various power law mass functions. The best fit primordial black hole mass functions, despite having significant finite width, have likelihoods which are similar to, and for one particular halo model greater than, those of the best fit delta functions . We then use Monte Carlo simulations to investigate the number of microlensing events necessary to determine whether the MACHO mass function has significant finite width. If the correct halo model is known, then ∌\sim 500 microlensing events will be sufficient, and will also allow determination of the mass function parameters to ∌5\sim 5%.Comment: 28 pages including 14 figures, version to appear in ApJ, minor changes to discussio

    Sgr A∗^*: a laboratory to measure the central black hole and cluster parameters

    Full text link
    Several stars orbit around a black hole candidate of mass 3.7×1063.7\times 10^6 M⊙_{\odot}, in the region of the Galactic Center (GC). Looking for General Relativistic (GR) periastron shifts is limited by the existence of a stellar cluster around the black hole that would modify the orbits due to classical effects that might mask the GR effect. Only if one knows the cluster parameters (its mass and core radius) it is possible to unequivocally deduce the GR effects expected and then test them. In this paper it is shown that the observation of the proper motion of Sgr A∗^*, vSgrA∗=(0.4±0.9)v_{Sgr A^*} = (0.4\pm 0.9) km s−1^{-1} (\citealt{reid2004}), could help us to constrain the cluster parameters significantly and that future measurements of the periastron shifts for at least three stars may adequately determine the cluster parameters and the mass of the black hole.Comment: in press on PASP, 200
    • 

    corecore