430 research outputs found
Opinion influence and evolution in social networks: a Markovian agents model
In this paper, the effect on collective opinions of filtering algorithms
managed by social network platforms is modeled and investigated. A stochastic
multi-agent model for opinion dynamics is proposed, that accounts for a
centralized tuning of the strength of interaction between individuals. The
evolution of each individual opinion is described by a Markov chain, whose
transition rates are affected by the opinions of the neighbors through
influence parameters. The properties of this model are studied in a general
setting as well as in interesting special cases. A general result is that the
overall model of the social network behaves like a high-dimensional Markov
chain, which is viable to Monte Carlo simulation. Under the assumption of
identical agents and unbiased influence, it is shown that the influence
intensity affects the variance, but not the expectation, of the number of
individuals sharing a certain opinion. Moreover, a detailed analysis is carried
out for the so-called Peer Assembly, which describes the evolution of binary
opinions in a completely connected graph of identical agents. It is shown that
the Peer Assembly can be lumped into a birth-death chain that can be given a
complete analytical characterization. Both analytical results and simulation
experiments are used to highlight the emergence of particular collective
behaviours, e.g. consensus and herding, depending on the centralized tuning of
the influence parameters.Comment: Revised version (May 2018
Citation gaming induced by bibliometric evaluation: A country-level comparative analysis
It is several years since national research evaluation systems around the globe started making use of quantitative indicators to measure the performance of researchers. Nevertheless, the effects on these systems on the behavior of the evaluated researchers are still largely unknown. For investigating this topic, we propose a new inwardness indicator able to gauge the degree of scientific self-referentiality of a country. Inwardness is defined as the proportion of citations coming from the country over the total number of citations gathered by the country. A comparative analysis of the trends for the G10 countries in the years 2000-2016 reveals a net increase of the Italian inwardness. Italy became, both globally and for a large majority of the research fields, the country with the highest inwardness and the lowest rate of international collaborations. The change in the Italian trend occurs in the years following the introduction in 2011 of national regulations in which key passages of professional careers are governed by bibliometric indicators. A most likely explanation of the peculiar Italian trend is a generalized strategic use of citations in the Italian scientific community, both in the form of strategic author self-citations and of citation clubs. We argue that the Italian case offers crucial insights on the constitutive effects of evaluation systems. As such, it could become a paradigmatic case in the debate about the use of indicators in science-policy contexts. © 2019 Baccini et al
Citation gaming induced by bibliometric evaluation: A country-level comparative analysis
It is several years since national research evaluation systems around the globe started making use of quantitative indicators to measure the performance of researchers. Nevertheless, the effects on these systems on the behavior of the evaluated researchers are still largely unknown. For investigating this topic, we propose a new inwardness indicator able to gauge the degree of scientific self-referentiality of a country. Inwardness is defined as the proportion of citations coming from the country over the total number of citations gathered by the country. A comparative analysis of the trends for the G10 countries in the years 2000-2016 reveals a net increase of the Italian inwardness. Italy became, both globally and for a large majority of the research fields, the country with the highest inwardness and the lowest rate of international collaborations. The change in the Italian trend occurs in the years following the introduction in 2011 of national regulations in which key passages of professional careers are governed by bibliometric indicators. A most likely explanation of the peculiar Italian trend is a generalized strategic use of citations in the Italian scientific community, both in the form of strategic author self-citations and of citation clubs. We argue that the Italian case offers crucial insights on the constitutive effects of evaluation systems. As such, it could become a paradigmatic case in the debate about the use of indicators in science-policy contexts
A nonparametric approach for model individualization in an artificial pancreas
The identification of patient-tailored linear time invariant glucose-insulin models is investigated for type 1 diabetic patients, that are characterized by a substantial inter-subject variability. The individualized linear models are identified by considering a novel kernel-based nonparametric approach and are compared with a linear time invariant average model in terms of prediction performance by means of the coefficient of determination, fit, positive and negative max errors, and root mean squared error. Model identification and validation are based on in-silico data collected from the adult virtual population of the UVA/Padova simulator. The data generation involves a protocol designed to produce a sufficient input excitation without compromising patient safety, compatible also with real life scenarios. The identified models are exploited to synthesize an individualized Model Predictive Controller (MPC) for each patient, which is used in an Artificial Pancreas to maintain the blood glucose concentration within an euglycemic range. The MPC used in several clinical studies, synthesized on the basis of a non-individualized average linear time invariant model, is also considered as reference. The closed-loop control performance is evaluated in an in-silico study on the adult virtual population of the UVA/Padova simulator in a perturbed scenario, in which the MPC is blind to random variations of insulin sensitivity in each virtual patient. © 2015, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved
Modeling vaccination rollouts, SARS-CoV-2 variants and the requirement for non-pharmaceutical interventions in Italy
Despite progress in clinical care for patients with coronavirus disease 2019 (COVID-19)1, population-wide interventions are still crucial to manage the pandemic, which has been aggravated by the emergence of new, highly transmissible variants. In this study, we combined the SIDARTHE model2, which predicts the spread of SARS-CoV-2 infections, with a new data-based model that projects new cases onto casualties and healthcare system costs. Based on the Italian case study, we outline several scenarios: mass vaccination campaigns with different paces, different transmission rates due to new variants and different enforced countermeasures, including the alternation of opening and closure phases. Our results demonstrate that non-pharmaceutical interventions (NPIs) have a higher effect on the epidemic evolution than vaccination alone, advocating for the need to keep NPIs in place during the first phase of the vaccination campaign. Our model predicts that, from April 2021 to January 2022, in a scenario with no vaccine rollout and weak NPIs (R = 1.27), as many as 298,000 deaths associated with COVID-19 could occur. However, fast vaccination rollouts could reduce mortality to as few as 51,000 deaths. Implementation of restrictive NPIs (R = 0.9) could reduce COVID-19 deaths to 30,000 without vaccinating the population and to 18,000 with a fast rollout of vaccines. We also show that, if intermittent open\u2013close strategies are adopted, implementing a closing phase first could reduce deaths (from 47,000 to 27,000 with slow vaccine rollout) and healthcare system costs, without substantive aggravation of socioeconomic losses
Observability and nonlinear filtering
This paper develops a connection between the asymptotic stability of
nonlinear filters and a notion of observability. We consider a general class of
hidden Markov models in continuous time with compact signal state space, and
call such a model observable if no two initial measures of the signal process
give rise to the same law of the observation process. We demonstrate that
observability implies stability of the filter, i.e., the filtered estimates
become insensitive to the initial measure at large times. For the special case
where the signal is a finite-state Markov process and the observations are of
the white noise type, a complete (necessary and sufficient) characterization of
filter stability is obtained in terms of a slightly weaker detectability
condition. In addition to observability, the role of controllability in filter
stability is explored. Finally, the results are partially extended to
non-compact signal state spaces
- …