6,723 research outputs found
Multiparticle Quantum Superposition and Stimulated Entanglement by Parity Selective Amplification of Entangled States
A multiparticle quantum superposition state has been generated by a novel
phase-selective parametric amplifier of an entangled two-photon state. This
realization is expected to open a new field of investigations on the
persistence of the validity of the standard quantum theory for systems of
increasing complexity, in a quasi decoherence-free environment. Because of its
nonlocal structure the new system is expected to play a relevant role in the
modern endeavor on quantum information and in the basic physics of
entanglement.Comment: 13 pages and 3 figure
Continuous variable cloning via network of parametric gates
We propose an experimental scheme for the cloning machine of continuous
quantum variables through a network of parametric amplifiers working as
input-output four-port gates.Comment: 4 pages, 2 figures. To appear on Phys. Rev. Let
Realization of Universal Optimal Quantum Machines by Projective Operators and Stochastic Maps
Optimal quantum machines can be implemented by linear projective operations.
In the present work a general qubit symmetrization theory is presented by
investigating the close links to the qubit purification process and to the
programmable teleportation of any generic optimal anti-unitary map. In
addition, the contextual realization of the N ->M cloning map and of the
teleportation of the N->(M-N) universal NOT gate is analyzed by a novel and
very general angular momentum theory. An extended set of experimental
realizations by state symmetrization linear optical procedures is reported.
These include the 1->2 cloning process, the UNOT gate and the quantum
tomographic characterization of the optimal partial transpose map of
polarization encoded qubits.Comment: 11 pages, 7 figure
Contextual Realization of the Universal Quantum Cloning Machine and of the Universal-NOT gate by Quantum Injected Optical Parametric Amplification
A simultaneous, contextual experimental demonstration of the two processes of
cloning an input qubit and of flipping it into the orthogonal qubit is
reported. The adopted experimental apparatus, a Quantum-Injected Optical
Parametric Amplifier (QIOPA) is transformed simultaneously into a Universal
Optimal Quantum Cloning Machine (UOQCM) and into a Universal NOT
quantum-information gate. The two processes, indeed forbidden in their exact
form for fundamental quantum limitations, will be found to be universal and
optimal, i.e. the measured fidelity of both processes F<1 will be found close
to the limit values evaluated by quantum theory. A contextual theoretical and
experimental investigation of these processes, which may represent the basic
difference between the classical and the quantum worlds, can reveal in a
unifying manner the detailed structure of quantum information. It may also
enlighten the yet little explored interconnections of fundamental axiomatic
properties within the deep structure of quantum mechanics. PACS numbers:
03.67.-a, 03.65.Ta, 03.65.UdComment: 27 pages, 7 figure
Enhanced Resolution of Lossy Interferometry by Coherent Amplification of Single Photons
In the quantum sensing context most of the efforts to design novel quantum
techniques of sensing have been constrained to idealized, noise-free scenarios,
in which effects of environmental disturbances could be neglected. In this
work, we propose to exploit optical parametric amplification to boost
interferometry sensitivity in the presence of losses in a minimally invasive
scenario. By performing the amplification process on the microscopic probe
after the interaction with the sample, we can beat the losses detrimental
effect on the phase measurement which affects the single-photon state after its
interaction with the sample, and thus improve the achievable sensitivity.Comment: 4 + 3 pages, 3 + 5 figure
- …