6,608 research outputs found

    Multiparticle Quantum Superposition and Stimulated Entanglement by Parity Selective Amplification of Entangled States

    Full text link
    A multiparticle quantum superposition state has been generated by a novel phase-selective parametric amplifier of an entangled two-photon state. This realization is expected to open a new field of investigations on the persistence of the validity of the standard quantum theory for systems of increasing complexity, in a quasi decoherence-free environment. Because of its nonlocal structure the new system is expected to play a relevant role in the modern endeavor on quantum information and in the basic physics of entanglement.Comment: 13 pages and 3 figure

    Continuous variable cloning via network of parametric gates

    Full text link
    We propose an experimental scheme for the cloning machine of continuous quantum variables through a network of parametric amplifiers working as input-output four-port gates.Comment: 4 pages, 2 figures. To appear on Phys. Rev. Let

    Hyperentanglement of two photons in three degrees of freedom

    Full text link
    A 6-qubit hyperentangled state has been realized by entangling two photons in three degrees of freedom. These correspond to the polarization, the longitudinal momentum and the indistinguishable emission produced by a 2-crystal system operating with Type I phase matching in the spontaneous parametric down conversion regime. The state has been characterized by a chained interferometric apparatus and its complete entangled nature has been tested by a novel witness criterium specifically introduced for hyperentangled states. The experiment represents the first realization of a genuine hyperentangled state with the maximum entanglement between the two particles allowed in the given Hilbert space.Comment: 4 pages, 2 figures, Revtex

    One-way quantum computation via manipulation of polarization and momentum qubits in two-photon cluster states

    Full text link
    Four-qubit cluster states of two photons entangled in polarization and linear momentum have been used to realize a complete set of single qubit rotations and the C-NOT gate for equatorial qubits with high values of fidelity. By the computational equivalence of the two degrees of freedom our result demonstrate the suitability of two photon cluster states for rapid and efficient one-way quantum computing.Comment: RevTex4, 4 pages, 3 figure

    Complete and Deterministic discrimination of polarization Bell state assisted by momentum entanglement

    Get PDF
    A complete and deterministic Bell state measurement was realized by a simple linear optics experimental scheme which adopts 2-photon polarization-momentum hyperentanglement. The scheme, which is based on the discrimination among the single photon Bell states of the hyperentangled state, requires the adoption of standard single photon detectors. The four polarization Bell states have been measured with average fidelity F=0.889±0.010F=0.889\pm0.010 by using the linear momentum degree of freedom as the ancilla. The feasibility of the scheme has been characterized as a function of the purity of momentum entanglement.Comment: 4 pages, v2, comments adde

    Experimental test of the no signaling theorem

    Full text link
    In 1981 N. Herbert proposed a gedanken experiment in order to achieve by the ''First Laser Amplified Superluminal Hookup'' (FLASH) a faster than light communication (FTL) by quantum nonlocality. The present work reports the first experimental realization of that proposal by the optical parametric amplification of a single photon belonging to an entangled EPR pair into an output field involving 5 x 10^3 photons. A thorough theoretical and experimental analysis explains in general and conclusive terms the precise reasons for the failure of the FLASH program as well as of any similar FTL proposals.Comment: 4 pages, 4 figure

    Experimental Detection of Entanglement with Polarized Photons

    Full text link
    We report on the first experimental realization of the entanglement witness for polarization entangled photons. It represents a recently discovered significant quantum information protocol which is based on few local measurements. The present demonstration has been applied to the so-called Werner states, a family of ''mixed'' quantum states that include both entangled and non entangled states. These states have been generated by a novel high brilliance source of entanglement which allows to continuously tune the degree of mixedness
    • …
    corecore