347 research outputs found

    Implementation of pressure reduction valves in a dynamic water distribution numerical model to control the inequality in water supply

    Get PDF
    The analysis of water distribution networks has to take into account the variability of users’ water demand and the variability of network boundary conditions. In complex systems, e.g. those characterized by the presence of local private tanks and intermittent distribution, this variability suggests the use of dynamic models that are able to evaluate the rapid variability of pressures and flows in the network. The dynamic behavior of the network also affects the performance of valves that are used for controlling the network. Pressure Reduction Valves (PRVs) are used for controlling pressure and reducing leakages. Highly variable demands can produce significant fluctuation of the PRV set point, causing related transient phenomena that propagate through the network and may result in water quality problems, unequal distribution of resources among users, and premature wear of the pipe infrastructure. A model was developed in previous studies and an additional module for pressure control was implemented able to analyze PRVs in a fully dynamic numerical framework. The model was demonstrated to be robust and reliable in the implementation of pressure management areas in the network. The model was applied to a district of the Palermo network (Italy). The district was monitored and pressure as well as flow data were available for model calibration

    Three-dimensional numerical simulations on wind- and tide-induced currents: The case of Augusta Harbour (Italy)

    Get PDF
    The hydrodynamic circulation in the coastal area of the Augusta Bay (Italy), located in the eastern part of Sicily, is analysed. Due to the heavy contamination generated by the several chemical and petrochemical industries active in the zone, the harbour was declared a Contaminated Site of National Interest. To mitigate the risks connected with the industrial activities located near the harbour, it is important to analyse the hydrodynamic circulation in the coastal area. To perform such analysis, a parallel 3D numerical model is used to solve the Reynolds-averaged momentum and mass balance, employing the k-? turbulence model for the Reynolds stresses. The numerical model is parallelized using the programing technology - Message Passing Interface (MPI) and applying the domain decomposition procedure.The Augusta Bay circulation is mainly due to the relative contribution of the wind force acting over the free surface and the tidal motion through the mouths. Due to the geometric complexity of the domain and the presence of several piers along the coast, a curvilinear boundary-fitted computational grid was used, where cells corresponding to land areas or to wharfs were excluded from the computation. Comparisons between numerical results and field measurements were performed. Three different simulations were performed to selectively isolate the effect of each force, wind and tide, acting in the considered domain. The current in the basin was successfully estimated on the basis of the numerical results, demonstrating the specific role of wind and tidal oscillation in the hydrodynamic circulation inside the harbour

    Blood and sputum biomarkers in COPD and asthma: a review

    Get PDF
    Chronic obstructive pulmonary disease (COPD) and asthma are lung inflammatory diseases that represent major public health problems. The primary, and often unique, method to evaluate lung function is spirometry, which reflects disease severity rather than disease activity. Moreover, its measurements strictly depend on patient's compliance, physician's expertise and data interpretation. The limitations of clinical history and pulmonary function tests have encouraged focusing on new possible tracers of diseases. The increase of the inflammatory response in the lungs represents an early pathological event, so biological markers related to inflammation may play key roles in earlier diagnosis, evaluation of functional impairment and prognosis. Biomarkers are measurable indicators associated with the presence and/or severity of a biological or pathogenic process, which may predict functional impairment, prognosis and response to therapy. The traditional approach based on invasive techniques (bronchoalveolar lavage and biopsies) may be replaced, at least in part, by using less invasive methods to collect specimens (sputum and blood), in which biomarkers could be measured. Proteomics, by the association between different protein profiles and pathogenic processes, is gaining an important role in pulmonary medicine allowing a more precise discrimination between patients with different outcomes and response to therapy. The aim of this review was to evaluate the use of biomarkers of airway inflammation in the context of both research and clinical practice

    Effect of task failure on intermuscular coherence measures in synergistic muscles

    Get PDF
    The term "task failure" describes the point when a person is not able to maintain the level of force required by a task. As task failure approaches, the corticospinal command to the muscles increases to maintain the required level of force in the face of a decreased mechanical efficacy. Nevertheless, most motor tasks require the synergistic recruitment of several muscles. How this recruitment is affected by approaching task failure is still not clear. The increase in the corticospinal drive could be due to an increase in synergistic recruitment or to overlapping commands sent to the muscles individually. Herein, we investigated these possibilities by combining intermuscular coherence and synergy analysis on signals recorded from three muscles of the quadriceps during dynamic leg extension tasks. We employed muscle synergy analysis to investigate changes in the coactivation of the muscles. Three different measures of coherence were used. Pooled coherence was used to estimate the command synchronous to all three muscles, pairwise coherence the command shared across muscle pairs and residual coherence the command peculiar to each couple of muscles. Our analysis highlights an overall decrease in synergistic command at task failure and an intensification of the contribution of the nonsynergistic shared command

    Ischemic cardiovascular disease in workers occupationally exposed to urban air pollution – A systematic review

    Get PDF
    Introduction. Cardiovascular disease is the first cause of morbidity and mortality worldwide. Among several known risk factors, researchers also focus their attention on the chronic exposure to air pollution. There is much evidence that exposure to air pollution, especially to ultrafine particles, can damage the endothelium and can favour cardiovascular diseases in the general population. Occupational exposition could be an additive risk factor for the cardiovascular system. This article presents a scientific review of the linkage between occupational exposure to air pollution and ischemic heart disease. Materials and method. A scientific review was undertaken, followed by PRISMA Statements. Observational studies were selected from several scientific databases, likesuch as Pubmed, Google Scholar, Nioshtic-2 and Reserchgate, searching for selected key words: police workers, professional drivers, mail carriers, filling station attendants, road cleaners, garage workers, motor vehicles and engine maintenance. All the key words were combined with “Boolean Operators” with the following words: cardiovascular (or cardiac) disease, cardiovascular function, cardiovascular system, ischemic heart disease, coronary disease, myocardial infarction. During the systematic research, the focus was on retrospective and prospective studies from January 1990 – December 2014. Results. Both the retrospective and prospective studies showed an increased risk of ischemic heart disease in occupationally occupied people exposed to air pollution. Only one study presented a ly minor risk. Conclusions. The findings of this systematic review suggest a possible linkage between occupational exposure to urban air pollution, especially to motor exhaust and particulate, and ischemic heart disease

    The Effect of Damage Functions on Urban Flood Damage Appraisal

    Get PDF
    Flooding damage appraisal can been obtained by interpolating real damage data caused by historical flooding events or accounting the effects of a flood in terms of the depreciation of assets. Most often, the expected damage is evaluated by means of damage functions describing the relationship occurring between the damage and hydraulic characteristics of flood. The present paper aims to evaluate the uncertainty linked to the choice of the depth-damage function adopted in the flood damage analysis. Several possible depth-damage function formulations were selected in literature and applied to historical flooding events monitored in the "Centro Storico" catchment in Palermo (Italy). (C) 2013 The Authors. Published by Elsevier Ltd

    Definition of Water Meter Substitution Plans based on a Composite Indicator

    Get PDF
    This paper presents a water meter substitution plan based on a composite "Replacement indicator" which was defined and compared with common substitution strategies based on meter age and on run-to-fail approaches. The methodology was applied to one of the 17 sub-networks in which the Palermo city water distribution network (Italy) is divided. The analysis was carried out considering a substitution budget limitation and the results showed that the use of "Replacement indicator" outperform the classical substitution strategies based on meter age because it takes into account some other variables that may affect meter precision and wearing. (C) 2013 The Authors. Published by Elsevier Ltd
    corecore