European Review for Medical and Pharmacological Sciences

2016; 20: 698-708

Blood and sputum biomarkers in COPD and asthma: a review

G. PAONE^{1,2}, V. LEONE², V. CONTI³, L. DE MARCHIS⁴, E. IALLENI², C. GRAZIANI², M. SALDUCCI⁵, M. RAMACCIA², G. MUNAFÒ²

¹Department of Cardiovascular, Respiratory, Nephrologic, Anesthesiologic and Geriatric Sciences, "Sapienza" University of Rome, Rome, Italy;

²Department of Respiratory Diseases, S. Camillo-Forlanini Hospital, Rome, Italy;

³Department of Respiratory Diseases, IRCCS San Raffaele Pisana, Rome, Italy;

⁴Department of Radiology, Oncology, and Pathology, "Sapienza" University of Rome, Rome, Italy;

⁵Department of Sense Organs, "Sapienza" University of Rome, Rome, Italy.

Abstract. – Chronic obstructive pulmonary disease (COPD) and asthma are lung inflammatory diseases that represent major public health problems. The primary, and often unique, method to evaluate lung function is spirometry, which reflects disease severity rather than disease activity. Moreover, its measurements strictly depend on patient's compliance, physician's expertise and data interpretation. The limitations of clinical history and pulmonary function tests have encouraged focusing on new possible tracers of diseases.

The increase of the inflammatory response in the lungs represents an early pathological event, so biological markers related to inflammation may play key roles in earlier diagnosis, evaluation of functional impairment and prognosis.

Biomarkers are measurable indicators associated with the presence and/or severity of a biological or pathogenic process, which may predict functional impairment, prognosis and response to therapy.

The traditional approach based on invasive techniques (bronchoalveolar lavage and biopsies) may be replaced, at least in part, by using less invasive methods to collect specimens (sputum and blood), in which biomarkers could be measured. Proteomics, by the association between different protein profiles and pathogenic processes, is gaining an important role in pulmonary medicine allowing a more precise discrimination between patients with different outcomes and response to therapy. The aim of this review was to evaluate the use of biomarkers of airway inflammation in the context of both research and clinical practice.

Key words:

Asthma, COPD, Biomarkers, Early diagnosis, Prognosis

Abbreviation list

- BAL Broncoalveolar lavage BMI Body Mass Index CC-10 Clara cell protein 10 CC-16 Clara cell protein-16 CCL-2 Chemokine (C-C motif) ligand 2 CCL-5 Chemokine (C-C motif) ligand 5 CCL-18 Chemokine (C-C motif) ligand 18 Cluster of differentiation 4 CD4+ CD-8+ Cluster of differentiation 8 COPD Chronic obstructive pulmonary disease CRP C reactive protein CT Computer Tomography CXCL1 Chemokine (C-X-C motif) ligand 1 CXCL8 Chemokine (C-X-C motif) ligand 8 Chemokine (C-X-C motif) ligand 9 CXCL9 CXCL10 Chemokine (C-X-C motif) ligand 10 CXCL11 Chemokine (C-X-C motif) ligand 11 DEFA1 Defensin, alpha 1 DEFA2 Defensin, alpha 2 ECP Eosinophil cationic protein EGFR Epidermal growth factor receptor FE (NO) Fractional exhaled nitric oxide FEV1 Forced Expiratory Volume in the 1st second FVC Forced Vital Capacity GM-CSF Granulocyte-macrophage colony stimulating factor GOLD Global Initiative for chronic Obstructive Lung Disease GRO a Growth-related-oncogene-alpha HNP Human Neutrophil Peptides IFN Interferon IgE Immunoglobulin E IL-1α Interleukin 1alpha IL-1β Interleukin 1beta Il-1RA Interleukin 1 receptor antagonist IL-2 Interleukin 2 IL-6 Interleukin 6
- IL-8 Interleukin 8
- IL-13 Interleukin 13

IL-17	Interleukin 17 activated
IL-18	Interleukin 18
IL-β	Interleukin beta
LTB4	Leukotriene B4
MCP-1	Monocyte chemoattractant protein-1
MMP-12	Matrix metalloproteinase-12
MMP-1	Matrix metalloproteinase-1
MMP-7	Matrix metalloproteinase-7
MMP-8	Matrix metalloproteinase-8
MMP-9	Matrix metalloproteinase-9
MPO	Myeloperoxidase
NE	Neutrophil elastase
NIH	National Institutes of Health
NO	Nitric Oxide
PEF	Peek expiratory flow
PRB4	Proline-rich protein 4
PRH1	Proline-rich protein HaeIII subfamily 1
PRH2	Proline-rich protein HaeIII subfamily 2
RNS	Reactive nitrogen species
SOD	Superoxide dismutase
SP-D	Surfactant protein-D
TGF-β	Transforming growth factor beta
Th17	T helper 17
Th2	T-helper 2
TNF-α	Tumor Necrosis Factor alpha
VEGF	Vascular endothelial growth factor
WA%	Airway wall area percent
WHO	World Health Organization
α1-AT	Alpha 1 antitrypsin

Introduction

Chronic obstructive pulmonary disease (COPD) and asthma are chronic inflammatory airways' diseases both arising as major public health concerns associated with a complex gene-environment interaction¹.

COPD is a multicomponent disease characterized by a not fully reversible airflow limitation, due to an abnormal inflammatory response to noxious stimuli and linked to a range of pathological changes such as mucus hypersecretion and airway obstruction. In established disease the inflammatory cell infiltrate is primarily represented by neutrophils and cytotoxic T cells¹.

COPD is currently a leading cause of morbidity and mortality worldwide and a recent projection suggested it will become the 4^{th} cause of death in 2030^2 .

Asthma is a common chronic inflammatory disease characterized by bronchospasm and reversible airflow obstruction. The predominant mechanism involved in the pathogenesis of asthma is a Type 2 helper T cell cytokine-mediated eosinophilic airway inflammation associated with hyper-responsiveness of the lungs^{1,3}.

The differential diagnosis between asthma and COPD has been traditionally based on age of onset, reversibility of airflow limitation, symptom variability and atopy. Nevertheless, misclassifications may occur because of the overlap of clinical features¹.

Unfortunately early symptoms of COPD are subtle and tend to be ignored by individuals, so very often COPD is diagnosed at advanced stages of disease when patients experience a substantial impairment of their quality of life⁴.

Spirometry is by far the more reliable diagnostic approach used to evaluate disease status, and often the only one. Pulmonary function tests reflect disease severity rather than disease activity and its measurements strictly depend on proper execution and data interpretation. Moreover, clinical symptoms on which pulmonologists rely for a correct diagnostic approach are subjective and nonspecific. Spirometry and clinical history limitations have therefore encouraged focusing on new indicators of disease.

Increased airways inflammatory response may represent an early pathological event, and markers of inflammation may play key roles both in earlier diagnosis and evaluation of prognosis^{5,6}. Efforts made in this field may also allow substantial improvement in predicting responsiveness to therapy and/or evaluating efficacy of therapy and disease activity⁷.

With this as a background, it is of primary importance to focus on improving early diagnostic methods, identifying patients with early COPD who could benefit from non-pharmacologic treatments⁸.

In this review, we have analyzed markers of early disease which may help to predict lung function impairment and prognosis of COPD and asthma.

COPD and blood biomarkers

Although the observation that blood biomarkers could be measured by cost-effective and routinely used techniques makes this approach very appealing, it is important to underline that morbidities other than lung diseases may alter biomarker concentrations, making difficult to give a clearcut meaning to their measurements⁵.

The biomarkers of systemic inflammation that have been most widely studied are fibrinogen, interleukin (IL)-6, IL-8, and C-reactive protein (CRP)⁹. These markers can distinguish patients with COPD from controls with acceptable sensitivity; however, unfortunately, they lack specificity⁶. Therefore, other molecules, such as extracellular matrix markers such as metalloproteinases (MMPs) 8 and 9 and lung-derived markers, including surfactant protein-D (SP-D), clara cell protein-16 (CC-16) and CCL-18 have also been studied in order to identify proteins that could better mirror the airway environment⁹.

According to its definition, an ideal biomarker must be reproducible in stable disease. Among blood markers, this has been the case of SP-D, fibrinogen and CC-16, while other candidate molecules, including IL-6 and IL-8, CCL-18 and CRP, need further evaluation¹⁰.

SP-D is emerging as one of the promising markers, being an important molecule involved in pulmonary system immunity and surfactant homeostasis: blood median levels of SP-D are higher in COPD patients and in smokers. While SP-D levels do not correlate with GOLD-defined disease severity status, peak blood levels seem to be linked to exacerbations risk and are associated with extension of CT-documented emphysema and its progression^{11,12}.

Currently, another emerging biomarker for COPD is fibrinogen, an acute phase plasma protein, which is synthetized primarily in the liver and converted by thrombin into fibrin during blood coagulation. According to Duvoix et al, while there is a significant association between fibrinogen levels and number of COPD exacerbations^{10,12}, and rate of hospital admissions^{13,14},it appears unable to predict lung function decline¹⁰.

Another predominant plasma biomarker is CRP, a routinely measured acute-phase protein, which is involved in COPD pathogenesis together with other inflammatory molecules such as matrix metalloproteinases. Although data need further studies, it has been shown that CRP levels at baseline are associated with lung function decline and increases of this molecule are inversely associated with forced expiratory volume in the first second (FEV₁). Similar findings were obtained with other markers such as MMP-1, 7 and 9, not only in COPD associated to tobacco smoking, but even in COPD due to biomass smoke exposure^{15,16}.

Fibronectin, a high molecular weight glycoprotein whose primary role is promoting wound repair after injury, has been investigated as biomarkers in COPD, with controversial results. According to some authors, fibronectin seems independently associated with mortality¹⁷, but these findings are not confirmed by more recent studies. In fact Kelly et al¹⁸ have studied the role of systemic inflammatory biomarkers such as fibronectin, Creactive protein, and IL-6 in predicting COPD mortality. Only C-reactive protein was proven to be independently associated with increased risk of death; while IL-6 has been shown to contribute to mortality prediction only when added to known clinical variables such as dyspnea, obstruction, BMI, and exercise capacity index.

Another recent study¹³ showed that the incidence of hospital admissions for COPD was significantly associated with increased levels of fibrinogen, al-antitrypsin, haptoglobin, ceruloplasmin, and orosomucoid.

Studies on the relationship between markers of eosinophilic and T cell activation and the development of progressive COPD are promising. In fact, IL-2 levels were higher in patients with stable disease as compared to patients with progressive COPD. Moreover, Eotaxin-1 appeared to be lower in patients with stable disease, suggesting that both molecules may become important markers of stability in patients with COPD¹⁹.

Airway remodeling in asthma and chronic obstructive pulmonary disease results in thickening of bronchial walls and may affect lung function. A significant correlation between CRP, IFN-gamma, IL-6, and IL-13 and parameters measured by high resolution computerized tomography, such as wall area as a percentage of total airway area (WA%), was recently demonstrated by Bon et al²⁰. On the contrary EGFR was inversely related to this parameter but was able to reflect airway functional impairment²¹.

Asthma and blood biomarkers

The management of asthma, as that of COPD, has always been focused on the monitoring of lung function using spirometric parameters such as FEV_1 and peek expiratory flow (PEF), possibly adding the evaluation of airway hyper-responsiveness. Only recently, the identification of molecules of airway inflammation as possible biomarkers of clinical utility has been approached. Due to asthma pathogenesis, the most widely investigated markers are B-cell and T-helper 2 (Th2) derived molecules⁷.

As recently discussed, high levels of blood eosinophils indicate a switch to Th2 cell phenotype and may help to predict responsiveness to corticosteroid therapy²².

A study by Wagener et al²³ evaluated the role of blood eosinophils, FE (NO) and serum periostin as

surrogates for sputum eosinophils in asthma, showing that blood eosinophils had the highest accuracy value and suggesting that blood eosinophils evaluation may facilitate asthma management and may help the search for individualised treatment.

In contrast, a previous research²⁴ showed that blood eosinophils, exhaled nitric oxide and total IgE levels, despite being associated with sputum eosinophils, did not accurately predict their percentages.

Periostin is a very promising molecule that recently emerged as a potential biomarker of Th-2 dependent eosinophilic activation. Though not yet applied in clinical practice nor accurately evaluated in COPD or other airway diseases, the levels of periostin in blood seem to be strictly linked to airway eosinophilia, even more than eosinophil count and IgE levels²⁵. Lately, Corren et al²⁶ conducted a trial on asthmatic adults in treatment with Lebrikizumab, an anti-IL-13 monoclonal antibody, demonstrating that higher levels of periostin are associated with a better response to therapy.

In this field special attention has been given to Immunoglobulin E (IgE), as it is a marker for B-cell activation²⁶.

Liang et al²⁷ recently conducted an epigenomewide association study, surveying association of total serum IgE concentration with methylation at 36 loci, which encode inflammatory mediators, eosinophil products, and specific transcription factors. This study confirmed that methylation at these loci was significantly different in eosinophils from subjects with and without asthma and high IgE levels, suggesting new biomarkers and therapeutic targets for atopic patients.

COPD and sputum biomarkers

Sputum represents an important diagnostic tool for assessing airway inflammation in patients with COPD. It can be spontaneous or induced by inhalation of hypertonic saline solution²⁸.

In contrast to other sampling procedures, such as bronchoalveolar lavage, in which the main cell type are the alveolar macrophage²¹, the typical COPD feature in sputum is an increased number of neutrophils although with not univocal findings. While Shaw et al suggest²⁹ a significant association between neutrophil count and GOLD stage³⁰, the ECLIPSE study³⁰ did not reveal a straightforward correlation with pulmonary function.

While at all COPD stages we can find an activation of innate immunity, characterized by high-

er levels of neutrophils and macrophages, in later stages, also lymphocytes seem to play a key role^{31,32}, with increased sputum concentrations of type 1 CD-8⁺ T-cells²¹.

Interestingly some COPD patients have an increase in eosinophil counts. Higher levels of eosinophils seem to be associated with a better responsiveness to corticosteroids and bronchodilators³³.

In the last years, the levels of an enormous amount of molecules, released by activated respiratory tract cells, such as cytokines, chemokines, lymphokines, growth factors, molecules related to oxidative stress, proteases and antiproteases, have been found altered in the lungs of patients with COPD.

More than fifty cytokines have been identified for being responsible of the inflammatory process in COPD, and it appears to be a certain overlap in their functions. More studies are needed to clarify the role of each molecule in the pathogenesis of COPD^{34,35}.

Pro-inflammatory cytokines amplify and perpetuate the inflammatory response, in part through the activation of transcription factors that lead to the increased expression of certain genes. Among proinflammatory cytokines, several were found to be increased in the sputum of patients with COPD, (e.g. TNF- α , IL- β , and IL- β).

Tumor necrosis factor (TNF)- α is a pleiotropic cytokine that plays a significant role in chronic bronchitis, COPD and asthma, but the analysis of its levels yielded contrasting results. Some studies have shown that COPD cultured sputum cells synthesize significantly less TNF- α than healthy nonsmoking subjects, while no significant differences were found between sputum cells from COPD patients and healthy smokers³⁶. On the contrary, Hacievliyagil et al³⁷ found higher levels of TNF- α in the sputum of COPD patients compared to the smoking and non-smoking control subjects, as also reported by Barnes³⁴.

Interleukine (IL)-1 α , IL-1 β , and IL-1 receptor antagonist (IL-1RA) constitute the IL-1 superfamily, involved in cell proliferation, differentiation and apoptosis, and in the induction of macrophage related cytokines and metalloproteinase MMP-9 release. Data on these molecules are conflictual. According to recent studies, there is an increase in the levels of this pro-inflammatory cytokine in COPD patients sputum, which is associated with disease severity. Moreover, a decrease in the levels of both IL1 receptor antagonist and soluble IL1 receptor was demonstrated³⁸.

On the other hand, Comandini et al³⁶ report that the expression of IL-1 in sputum bronchial cells is present also in normal individuals, but data are not sufficient to draw a clear role in tobacco smoke exposed subjects.

Also IL-6 was recently studied, with the observation that its levels appear to be increased in the sputum of COPD patients, primarily during exacerbations³⁹.

Chemokines have been observed in sputum samples, as they play a key role in the recruitment of inflammatory cells, especially neuthophils, to the lungs of COPD patients: CCL2, CXCL8, CXCL1 and CCL5 levels appeared markedly increased in induced sputum of patients with COPD^{40,41}.

CXCL9, CXCL10 and CXCL11 correlate with disease severity and are increased in sputum of COPD patients. These findings were confirmed by Costa et al⁴² that analyzed their levels in COPD patients and in normal volunteers.

In their review Comandini et al³⁶ suggest that the increased levels of chemotactic protein-1 (MCP-1) and growth-related-oncogene-alpha (GRO- α) may be related to an inflammatory state due to disease process and not just to smoke exposure.

Some T-cell cytokines, also known as lymphokines, seem to be increased in the sputum of individuals with advanced COPD³¹. IL-17A, produced by Th17 cells, a subset of CD4⁺ T cells, was found to be increased in the sputum of individuals with COPD⁴³. Similar findings were observed for IL-18, with data also related to disease severity⁴⁴.

Several growth factors have been studied in sputum samples of patients with COPD. Profita et al³⁶ demonstrated higher levels of granulocytemacrophage colony stimulating factor (GM-CSF) in induced sputum cells of COPD patients, while data on sputum induced transforming growth factor (TGF)- β are still scarce²⁸.

Vascular endothelial growth factor (VEGF) was found to be increased in induced sputum of patients with COPD and its levels were negatively correlated with lung function⁴⁵.

Among oxidants and oxidative stress related factors, several molecules have been studied in their association with COPD in sputum samples.

Myeloperoxidase (MPO) is contained in neutrophils granules and in monocytes. According to a recent metanalysis, its sputum levels were higher during exacerbations and in stable disease in comparison to normal controls⁴⁶. Superoxide dismutase (SOD) has been more intensively studied using other sampling procedures, while there are not enough data on sputum²⁸.

8-isoprostane is an important prostaglandinisomer, which is emerging as a relevant marker associated to the physiopathology of oxidative damage. According to Kinnula et al⁴⁶, 8-isoprostane increases in the sputum of COPD patients and is correlated with smoking attitude and with the reduction of FEV₁ and FEV₁/FVC.

Levels of nitrotyrosine are considered to be reliable indicators of the production of Reactive nitrogen species (RNS), due to higher levels of NO during airway inflammation. Nitrotyrosine levels are increased in the induced sputum of smokers, as documented by Rityla et al⁴⁶.

With regard to proteases and antiproteases, matrix metalloproteinases (MMPs) are involved in the destruction of extra cellular matrix components, and their levels have been accurately studied in the sputum of patients with COPD. Ilumets et al⁴⁸ suggest that MMP-8 can differentiate symptomatic smokers and individuals who risk to develop COPD among non-symptomatic chronic smokers. Moreover, MMP-8 also seems to be associated with lung function. Also MMP-9 and MMP-12 appear increased in symptomatic smokers but neither of them accurately differentiate healthy from symptomatic smokers.

Neutrophil elastase (NE) is a neutrophilic serine protease, and its enzymatic activity appears to be considerably increased in current smokers versus former smokers with COPD⁴⁹. Paone et al⁵⁰ confirmed an increased concentration of NE in the sputum of patients with COPD, and demonstrated an increase of HNP (Human Neutrophil Peptide), IL-8 and MMP-9. Furthermore NE, IL-8, and HNP, seemed to have a significant negative correlation with FEV₁ and FEV₁/FVC.

Concerning leukocyte pro-inflammatory and antibacterial products, one of the main molecules that have been studied in sputum is leukotriene B4 (LTB4), an arachidonic-derived molecule released by both neutrophils and macrophages. Tufvesson et al showed that sputum levels of LTB4 could be reliable predictors of COPD exacerbations⁵¹.

Another approach in biomarker classification has been proposed by Comandini et al³⁶, who stratified biomarkers into five principal groups: 1) molecules that are associated both with tobacco smoke and COPD, such as MMP-9, MMP-8, LTB4, GM-CSF and 8-isoprostane; 2) COPD biomarkers that are not in association with tobacco smoke, such as IL-8, α 1-AT, and GRO- α ; 3) biomarkers that are influenced by tobacco smoke exposition but are not correlated with COPD activity (NE, CXCL9, CXCL10, CXCL11 and CCL5); 4) markers that are negatively associated with COPD and/or tobacco smoke, such as TGF- β and SOD; 5) biomarkers that are variably associated with COPD and tobacco smoke (TNA- α , MPO, and VEGF).

Asthma and sputum biomarkers

Sputum analysis is also a remarkable technique applied to investigate respiratory tract in patients with asthma. Since asthma is not associated with productive cough, it is often necessary to perform sputum induction.

Asthma is traditionally considered as a prevalent eosinophilic disease so that several Authors have suggested to apply eosinophil counts to support diagnosis⁵². Because cases of noneosinophilic asthma may exist, as well as patients showing eosinophilic predominant COPD: studies on induced sputum have led to the definition of four inflammatory phenotypes of asthma: eosinophilic, neutrophilic, mixed and paucigranulocytic pattern⁵³.

Recent observations⁵⁴ pointed out that patients with higher numbers of sputum eosinophils seem to have better responsiveness to steroid therapy. Moreover, Petsky et al⁵⁵ carried out a meta-analysis in which asthma exacerbations resulted prevented by treatment protocols based on sputum eosinophil counts rather than clinical symptoms. However, other trials did not confirm these results⁵⁶.

Another potential sputum biomarker for asthma is eosinophil cationic protein (ECP). It is an eosinophil-derived degranulation product that is released during several inflammatory conditions, therefore does not represent a specific marker of asthmatic disease⁵⁷. Nevertheless, in patients with asthma diagnosis, ECP levels could be used for the assessment of the extension and severity of inflammation⁵⁸. In addition, VEGF appears increased in sputum during asthmatic exacerbations and high levels of VEGF in sputum seem to be related to airflow obstruction⁵⁹.

COPD and biomarkers in BAL

Besides sputum and blood samples, potential useful COPD biomarkers have been evaluated using broncoalveolar lavage (BAL), such as several pro and anti-inflammatory molecules sampled from the lower respiratory tract.

Importantly, several shortcomings must be considered: COPD inflammation may alter the characteristics of alveolar fluid making it quantitatively inappropriate for analysis; the exact amount of biomarkers may be difficult to measure due to sample dilution because of saline solution lavage²¹. In addition, the effectiveness of the results could be limited by manipulation during BAL processing^{33,39}. Thus, the validation of a diagnostic protocol based on BAL requires a significant number of patients.

As BAL analyzes distal airways, there is a high prevalence of alveolar macrophages in the cell count of COPD patients (>80%)⁶⁰, but, interestingly, Drost et al⁶¹ found that a severe stage of disease might be associated with mononuclear cell reduction. Of note, smokers show a decreased quote of lymphocytes as compared to exsmokers⁶⁰. In particular, while the amount of CD-8⁺ T-cells appears higher, CD-4⁺ T-cells number is lower in COPD smokers and healthy smokers compared to non-smoking subjects. It is difficult to gather data about eosinophils; however, some studies demostrated a higher number of this cell type in COPD⁶⁰.

COPD pathogenesis is linked to neutrophils and their amount in the BAL correlates with FEV₁/FVC ratio⁶¹. In fact, there is a rise of both neutrophils and their derived molecules levels during stable status and also during exacerbations, compared to healthy nonsmokers. This is probably due to smoking exposition, as some studies document⁶⁰. Notably, in mild emphysema, this cell type cannot be detected in BAL, even though in BAL fluid neutrophil derived enzymes and neutrophil chemokine IL-8 are higher than in healthy condition⁶⁰.

Rohuani et al⁶² found that NE baseline levels in BAL from individuals with alpha 1 antitrypsin deficiency correlates with FEV_1 rate of decline.

BAL fluid is a source of different molecules which may be detected in order to analyze respiratory tract inflammation. Paone et al⁶³ found that human neutrophil peptides (HNP), small antimicrobial molecules released by activated neutrophils, are increased in smoker BAL.

COPD causes a rise of surfactant protein D (SP-D) in serum but a decrease of this molecule in BAL whereas steroid treatment leads to an opposite condition. For this reason, SP-D may be considered a marker of both COPD and response to therapy³³.

Miller et al⁶⁴ demonstrated that some eosinophil

markers in BAL such as eosinophil cationic protein (ECP) and eotaxin were associated with emphysema extension reported in CT scan and they were higher in COPD patients after bronchodilator therapy, in contrast to neutrophil marker levels. In addition, healthy smokers have higher BAL levels of ECP, myeloperoxidase and IL-8 in comparison with nonsmokers. However, it is useful to underline that increased ECP and MPO levels are found also in other chronic respiratory disorders^{65,66}.

Another interesting finding is that prostaglandin D2 and eicosapentaenoic acid levels in BAL lavage are positively correlated with lung function in COPD patients⁶⁷. Antczak et al⁶⁸ also demonstrated positive correlations between 8-isoprostane and LTB4 amount in BAL.

Among studies on COPD biomarkers, some authors investigated an innovative research field, the regulation of gene expression involved in lung inflammation. In BAL lavage, basic salivary proline-rich protein 4 (PRB4) and lysozyme C have been reported to be up-regulated in smokers, neutrophil defensins 1 and 2 (DEFA) were positively associated to COPD, and transcription of calgranulina A gene has been found after smoke exposition, both in patients with and without COPD. On the other hand, salivary acidic proline-rich phosphoprotein 1/2 (PRH1 and PRH2) and clara cell phospholipid binding protein (CC10) showed a reduced expression⁶⁹.

Tobacco smoke is by far the most commonly encountered risk factor for COPD; however, not all smokers develop clinically significant COPD. This suggests that cigarette smoking cannot be the only cause of COPD and that additional factors are involved in determining each individual susceptibility. According to Dahl et al⁵ the earliest potential risk factors of developing obstructive lung diseases are due to genetic predisposition, and as suggested by a meta-analysis by Joanna Smolonska⁷⁰ on suspected obstructive airway diseases genes, a polygenic inheritance seems involved, with each gene having a small effect on the development of the disease.

In addition, COPD is a progressive disease and it is demonstrated to begin many years before a diagnosis is made, so focusing on indicators of earlier diagnosis and treatment is of primary importance⁷¹.

At present, spirometry is the most reliable detection method for obstructive pulmonary diseases; however, airway obstruction does not seem to correspond to the very beginning of the disease⁷¹. When spirometry is used as the only method of analysis, all the other pathological components of such multicomponent diseases remain ignored⁵. New proven diagnostic tests are therefore needed in order to allow an early and complete disease assessment.

An earlier diagnosis would bring several advantages, including the use of therapy when it would have a good chance to modify the course of the disease. Therefore, the identification of biological markers of susceptibility or progression of disease would be crucial.

In this background, and considering the key role of aberrant inflammatory response in the lung as a primary pathogenic process of obstructive airway diseases, inflammatory markers have a promising predictive value in COPD and asthma⁵.

Although an overwhelming number of biomarkers has been proposed in airways diseases, there are still many unanswered questions about their utility in "real life".

One of the most widespread definition of a biomarker is that of a molecule of clinical utility by being associated with an alteration in physiology or progression of disease.

Several characteristics distinguish an ideal biomarker: its association with disease, the demonstration that therapy has a consistent effect on the marker concentrations and the observation that these changes are associated with positive effects in clinical outcomes. Other necessary feature is that of being easily measured using standard procedures⁷².

The identification of potential markers of airway diseases is, therefore, one of the most challenging aims of research⁵ and markers of pulmonary diseases will be very useful in the upcoming future especially in predicting prognosis and responsiveness to treatment³⁴.

However, as Dahl et al⁵ notice, biomarkers may be contemporarily associated to various pathogenic processes, possibly representing diseases other than COPD, making more difficult the interpretation of the results.

An interesting suggestion offered by Tzortzaki et al⁷³ is to combine panels of markers together to achieve higher specificity. This alternative approach would confer clinical utility to markers that currently are not sufficiently specific to be used alone.

Paone et al⁷⁴ evaluated a panel of sputum markers such as HNP, MMP-9, and IL-8 analyzing its diagnostic role in discriminating COPD patients from smokers.

As underlined by Ptolemi et al⁷⁵, special attention must be given to cost benefit ratio, as the number of NIH grants from 1986 to 2009 for biomarker research has enormously increased without comparable findings of clinical utility, especially in the latest years.

Conclusions

Although at the present the knowledge about reproducibility is too immature and very few markers have been validated, there is urgency to approve obstructive pulmonary disease biomarkers to give consistent help to clinicians in achieving a complete and prompt assessment of patients, including diagnosis, follow-up and response to therapy⁷⁶.

Recently proteomics approach, by the association between different protein profiles and pathogenic processes, is gaining an important role in pulmonary medicine allowing a more precise discrimination between patients with different outcomes and response to therapy. Lee et al⁷⁷ undertake proteomic analysis in lung tissues of smokers, nonsmokers, and COPD patients demonstrating a significant difference in the three groups.

It is likely that an integrative approach that combines biomarkers with clinical parameters, associated with new information from the fields of genomics, transcriptomics, and proteomics, will improve the ability of clinicians in monitoring obstructive lung diseases progression and predicting their response to therapy⁷⁸.

Conflict of Interests

The Authors declare that they have no conflict of interests.

References

- ABRAMSON MJ, PERRET JL, DHARMAGE SC, McDONALD VM, McDONALD CF. Distinguishing adult-onset asthma from COPD: a review and a new approach. Int J Chron Obstruct Pulmon Dis 2014; 9: 945-962.
- ZONG DD, OUYANG RY, CHEN P. Epigenetic mechanisms in chronic obstructive pulmonary disease. Eur Rev Med Pharmacol Sci 2015; 19: 844-856.
- TERZANO C, MORANO S, CECCARELLI D, CONTI V, PAONE G, PETROIANNI A, GRAZIANI E, CARNOVALE A, FALLARINO M, GATTI A, MANDOSI E, LENZI A. Effect of insulin on airway responsiveness in patients with type 2 diabetes mellitus: a cohort study. J Asthma 2009; 46: 703-707.
- PAONE G, CONTI V, BIONDI-ZOCCAI G, DE FALCO E, CHIMENTI I, PERUZZI M, MOLLICA C, MONACO G, GIAN-NUNZIO G, BRUNETTI G, SCHMID G, RANIERI VM, FRATI

G. Long-term home non invasive mechanical ventilation increases systemic inflammatory response in chronic obstructive pulmonary disease: a prospective observational study. Mediators Inflamm2014; 2014: 503145.

- DAHL M, NORDESTGAARD BG. Markers of early disease and prognosis in COPD. Int J Chron Obstruct Pulmon Dis 2009; 4: 157-167.
- 6. LEUNG JM, SIN DD. Biomarkers in airway diseases. Can Respir J 2013; 20: 180-182.
- DASGUPTA A, NAIR P. When are biomarkers useful in the management of airway diseases? Pol Arch Med Wewn 2013; 123: 183-188.
- PAONE G, SERPILLI M, CONTI V, GIRARDI E, PRINCIPE RS, PUGLISI G, DE MARCHIS L, SCHMID G. The combination of a smoking cessation programme with a routine rehabilitation centre increases stop-smoking rate. J Rehabil Med 2008; 40: 672-677.
- DICKENS JA, MILLER BE, EDWARDS LD, SILVERMAN EK, LOMAS DA, TAL-SINGER R; Evaluation of COPD Longitudinally to Identify Surrogate Endpoints (ECLIPSE) study investigators. COPD association and repeatability of blood biomarkers in the ECLIPSE cohort. Respir Res 2011; 12: 146-155.
- DUVOIX A, DICKENS J, HAO I, MANNINO D, MILLER B, TAL-SINGER R, LOMAS DA. Blood fibrinogen as a biomarker of chronic obstructive pulmonary disease. Thorax 2013; 68: 670-676.
- LOMAS DA, SILVERMAN EK, EDWARDS LD, LOCANTORE NW, MILLER BE, HORSTMAN DH, TAL-SINGER R; Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints study investigators. Serum surfactant protein D is steroid sensitive and associated with exacerbations of COPD. Eur Respir J 2009; 34: 95-102.
- 12. HURST JR, VESTBO J, ANZUETO A, LOCANTORE N, MÜLLEROVA H, TAL-SINGER R, MILLER B, LOMAS DA, AGUSTI A, MACNEE W, CALVERLEY P, RENNARD S, WOUTERS EF, WEDZICHA JA; Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE) Investigators. Susceptibility to exacerbation in chronic obstructive pulmonary disease. N Engl J Med 2010; 363: 1128-1238.
- ENGSTRÖM G, SEGELSTORM N, EKBERG-ARONSSON M, NILSSON PM, LINDGÄRDE F, LÖFDAHL CG. Plasma markers of inflammation and incidence of hospitalisations for COPD: results from a populationbased cohort study. Thorax 2009; 643: 211-215.
- VALVI D, MANNINO DM, MÜLLEROVA H, TAL-SINGER R. Fibrinogen, chronic obstructive pulmonary disease (COPD) and outcomes in two United States cohorts. Int J Chron Obstruct Pulmon Dis 2012; 7: 173-182.
- MONTAÑO M, SANSORES RH, BECERRIL C, CISNEROS J, GONZÁLEZ-AVILA G, SOMMER B, OCHOA L, HERRERA I, RAMIREZ-VENEGAS A, RAMOS C. FEV1 inversely correlates with metalloproteinases 1, 7, 9 and CRP in COPD by biomass smoke exposure. Respir Res 2014; 15: 74-80.
- HIGASHIMOTO Y, IWATA T, OKADA M, SATOH H, FUKUDA K, TOHDA Y. Serum biomarkers as predictors of lung function decline in chronic obstructive pulmonary disease. Respir Med 2009; 103: 1231-1238.
- MAN SF, XING L, CONNETT JE, ANTHONISEN NR, WISE RA, TASHKIN DP, ZHANG X, VESSEY R, WALKER TG, CEL-

LI BR, SIN DD. Circulating fibronectin to C-reactive protein ratio and mortality: a biomarker in COPD? Eur Respir J 2008; 32: 1451-1457.

- KELLY E, OWEN CA, PINTO-PLATA V, CELLI BR. The role of systemic inflammatory biomarkers to predict mortality in chronic obstructive pulmonary disease. Expert Rev Respir Med 2013; 7: 57-64.
- D'ARMIENTO JM, SCHARF SM, ROTH MD, CONNETT JE, GHIO A, STERNBERG D, GOLDIN JG, LOUIS TA, MAO JT, O'CONNOR GT, RAMSDELL JW, RIES AL, SCHLUGER NW, SCIURBA FC, SKEANS MA, VOELKER H, WALTER RE, WENDT CH, WEINMANN GG, WISE RA, FORONJY RF. Eosinophil and T cell markers predict functional decline in COPD patients. Respir Res 2009; 10: 113-125.
- 20. BON JM, LEADER JK, WEISSFELD JL, COXSON HO, ZHENG B, BRANCH RA, KONDRAGUNTA V, LEE JS, ZHANG Y, CHOI AM, LOKSHIN AE, KAMINSKI N, GUR D, SCIURBA FC. The influence of radiographic phenotype and smoking status on peripheral blood biomarker patterns in chronic obstructive pulmonary disease. PLoS One 2009; 4: e6865.
- 21. CAZZOLA M, NOVELLI G. Biomarkers in COPD. Pulm Pharmacol Ther 2010; 23: 493-500.
- 22. GAILLARD EA, MCNAMARA PS, MURRAY CS, PAVORD ID, SHIELDS MD. Blood eosinophils as a marker of likely corticosteroid response in children with preschool wheeze: time for an eosinophil guided clinical trial? Clin Exp Allergy 2015; 45: 1384-1395.
- 23. WAGENER AH, DE NIJS SB, LUTTER R, SOUSA AR, WEERSINK EJ, BEL EH, STERK PJ. External validation of blood eosinophils, FE(NO) and serum periostin as surrogates for sputum eosinophils in asthma. Thorax 2015; 70: 115-120.
- 24. HASTIE AT, MOORE WC, LI H, RECTOR BM, ORTEGA VE, PASCUAL RM, PETERS SP, MEYERS DA, BLEECKER ER; National Heart, Lung, and Blood Institute's Severe Asthma Research Program. Biomarker surrogates do not accurately predict sputum eosinophil and neutrophil percentages in asthmatic subjects. J Allergy Clin Immunol 2013; 132: 72-80.
- NAIR P, KRAFT M. Serum periostin as a marker of T(H)2-dependent eosinophilic airway inflammation. J Allergy Clin Immunol 2012; 130: 655-656.
- 26. SLY PD, BONER AL, BJÖRKSTEN B, BUSH A, CUSTOVIC A, EIGENMANN PA, GERN JE, GERRITSEN J, HAMELMANN E, HELMS PJ, LEMANSKE RF, MARTINEZ F, PEDERSEN S, RENZ H, SAMPSON H, VON MUTIUS E, WAHN U, HOLT PG. Early identification of atopy in the prediction of persistent asthma in children. Lancet 2008; 372(9643): 1100-1106.
- 27. LIANG L, WILLIS-OWEN SA, LAPRISE C, WONG KC, DAVIES GA, HUDSON TJ, BINIA A, HOPKIN JM, YANG IV, GRUNDBERG E, BUSCHE S, HUDSON M, RÖNNBLOM L, PASTINEN TM, SCHWARTZ DA, LATHROP GM, MOF-FATT MF, COOKSON WO. An epigenome-wide association study of total serum immunoglobulin E concentration. Nature 2015; 520(7549): 670-674.
- PELAIA G, TERRACCIANO R, VATRELLA A, GALLELLI L, BUSCETI MT, CALABRESE C, STELLATO C, SAVINO R, MASELLI R. Application of proteomics and peptidomics to COPD. Biomed Res Int 2014; 2014: 764581.

- SHAW JG, VAUGHAN A, DENT AG, O'HARE PE, GOH F, BOWMAN RV, FONG KM, YANG IA. Biomarkers of progression of chronic obstructive pulmonary disease (COPD). J Thorac Dis 2014; 6: 1532-1547.
- 30. FANER R, TAL-SINGER R, RILEY JH, CELLI B, VESTBO J, MACNEE W, BAKKE P, CALVERLEY PM, COXSON H, CRIM C, EDWARDS LD, LOCANTORE N, LOMAS DA, MILLER BE, RENNARD SI, WOUTERS EF, YATES JC, SILVERMAN EK, AGUSTI A; ECLIPSE Study Investigators. Lessons from Eclipse: a review of COPD biomarkers. Thorax 2014; 69: 666-672.
- CELLI B. Predictors of mortality in COPD. Respir Med 2010; 104: 773-779.
- BARNES PJ. Immunology of asthma and chronic obstructive pulmonary disease. Nat Rev Immunol 2008; 8: 183-192.
- 33. STOCKLEY RA. Biomarkers in chronic obstructive pulmonary disease: confusing or useful? Int J Chron Obstruct Pulmon Dis 2014; 9: 163-177.
- BARNES PJ. The cytokine network in chronic obstructive pulmonary disease. Am J Respir Cell MolBiol 2009; 41: 631-638.
- BARNES PJ. The cytokine network in asthma and chronic obstructive pulmonary disease. J Clin Invest 2008; 118: 3546-3556.
- COMANDINI A, ROGLIANI P, NUNZIATA A, CAZZOLA M, CURRADI G, SALTINI C. Biomarkers of lung damage associated with tobacco smoke in induced sputum. Respir Med 2009; 103: 1592-1613.
- HACIEVLIYAGIL SS, MUTLU LC, TEMEL I. Airway inflammatory markers in chronic obstructive pulmonary disease patients and healthysmokers. Niger J Clin Pract 2013; 16: 76-81.
- SAPEY E, AHMAD A, BAYLEY D, NEWBOLD P, SNELL N, RUGMAN P, STOCKLEY RA. Imbalances between interleukin-1 and tumor necrosis factor agonists and antagonists in stable COPD. J Clin Immunol 2009; 29: 508-516.
- KOUTSOKERA A, KOSTIKAS K, NICOD LP, FITTING JW. Pulmonary biomarkers in COPD exacerbations: a systematic review. Respir Res 2013; 14: 111.
- 40. RAVI AK, KHURANA S, LEMON J, PLUMB J, BOOTH G, HEALY L, CATLEY M, VESTBO J, SINGH D. Increased levels of soluble interleukin-6 receptor and CCL3 in COPD sputum. Respir Res 2014; 15: 103-112.
- KAUR M, SINGH D. Neutrophil Chemotaxis Caused by Chronic Obstructive Pulmonary Disease Alveolar Macrophages: The Role of CXCL8 and the Receptors CXCR1/CXCR2. J Pharmacol Exp Ther 2013; 347: 173–180.
- 42. COSTA C, RUFINO R, TRAVES SL, LAPA E SILVA JR, BARNES PJ, DONNELLY LE. CXCR3 and CCR5 chemokines in induced sputum from patients with COPD. Chest 2008; 133: 26-33.
- 43. TRAVES SL, DONNELLY LE. Th17 cells in airway diseases. Curr Mol Med 2008; 8: 416-426.
- 44. ROVINA N, DIMA E, GERASSIMOU C, KOLLINTZA A, GRATZIOU C, ROUSSOS C. Interleukin-18 in induced sputum: association with lung function in chronic obstructive pulmonary disease. Respir Med 2009; 103: 1056-1062.
- 45. ZANINI A, CHETTA A, IMPERATORI AS, SPANEVELLO A, OLIVIERI D. The role of the bronchial microvasculature in the airway remodelling in asthma and COPD. Respir Res 2010; 11: 132-142.

- 46. ZHU A, GE D, ZHANG J, TENG Y, YUAN C, HUANG M, ADCOCK IM, BARNES PJ, YAO X. Sputum myeloperoxidase in chronic obstructive pulmonary disease. Eur J Med Res 2014; 19: 12-22.
- KINNULA VL, ILUMETS H, MYLLÄRNIEMI M, SOVUÄRVI A, RYTILÄ P. 8-Isoprostane as a marker of oxidative stress in non-symptomatic cigarette smokers and COPD. Eur Respir J 2007; 29: 51-55.
- 48. ILUMETS H, RYTILÄ P, DEMEDTS I, BRUSSELLE GG, SOVI-JÄRVI A, MYLLÄRNIEMI M, SORSA T, KINNULAVL. Matrixmetalloproteinases -8, -9 and -12 in smokers and patients with Stage 0 COPD. Int J Chron Obstruct Pulmon Dis 2007; 2: 369-379.
- 49. VAN OVERVELD FJ, DEMKOW U, GÓRECKA D, DE BACKER WA, ZIELI SKI J. Differences in responses upon corticosteroid therapy between smoking and non-smoking patients with COPD. J Physiol Pharmacol 2006; 57 Suppl 4: 273-278.
- PAONE G, CONTI V, LEONE A, SCHMID G, PUGLISI G, GI-ANNUNZIO G, TERZANO C. Human neutrophil peptides sputum levels in symptomatic smokers and COPD patients. Eur Rev Med Pharmacol Sci 2011; 15: 556-562.
- TUFVESSON E, EKBERG M, BJERMER L. Inflammatory biomarkers in sputum predict COPD exacerbations. Lung 2013; 191: 413-416.
- 52. LEUNG JM, SIN DD. Biomarkers in airway diseases. Can Respir J 2013; 20: 180-182.
- SIMPSON JL, SCOTT R, BOYLE MJ, GIBSON PG. Inflammatory subtypes in asthma: assessment and identification using induced sputum. Respirology 2006; 11: 54-61.
- 54. KUPCZYK M, HAQUE S, MIDDELVELD RJ, DAHLEN B, DAHLEN SE; BIOAIR Investigators. Phenotypic predictors of response to oral glucocorticosteroids in severe asthma. Respir Med 2013; 107: 1521-1530.
- 55. PETSKY HL, KYNASTON JA, TURNER C, LI AM, CATES CJ, LASSERSON TJ, CHANG AB. Tailored interventions based on sputum eosinophils versus clinical symptoms for asthma in children and adults. Cochrane Database Syst Rev 2007; (2): CD005603.
- WENZEL SE. Eosinophils in asthma--closing the loop or opening the door? N Engl J Med 2009; 360: 1026-1028.
- 57. VIJVERBERG SJ, HILVERING B, RAAUMAKERS JA, LAMMERS JW, MAITLAND-VAN DER ZEE AH, KOENDERMAN L. Clinical utility of asthma biomarkers: from bench to bedside. Biologics 2013; 7: 199-210.
- KOH GC, SHEK LP, GOH DY, VAN BEVER H, KOH DS. Eosinophil cationic protein: is it useful in asthma? A systematic review. Respir Med 2007; 101: 696-705.
- 59. ZOU H, FANG QH, MA YM, WANG XY. Analysis of growth factors in serum and induced sputum from patients with asthma. Exp Ther Med 2014; 8: 573-578.
- 60. CAZZOLA M, MACNEE W, MARTINEZ FJ, RABE KF, FRANCIOSI LG, BARNES PJ, BRUSASCO V, BURGE PS, CALVERLEY PM, CELLI BR, JONES PW, MAHLER DA, MAKE B, MIRAVITLLES M, PAGE CP, PALANGE P, PARR D, PISTOLESIM, RENNARD SI, RUTTEN-VAN MÖLKEN MP, STOCKLEY R, SULLIVAN SD, WEDZICHA JA, WOUTERS EF; American Thoracic Society; European Respiratory Society Task Force on outcomes of COPD. Outcomes for COPD pharma-

cological trials: from lung function to biomarkers. Eur Respir J 2008; 31: 416-469.

- DROST EM, SKWARSKI KM, SAULEDA J, SOLER N, ROCA J, AGUSTI A, MACNEE W. Oxidative stress and airway inflammation in severe exacerbations of COPD. Thorax 2005; 60: 293-300.
- 62. ROUHANI F, PAONE G, SMITH NK, KREIN P, BARNES P, BRANTLY ML. Lung neutrophil burden correlates with increased pro-inflammatory cytokines and decreased lung function in individuals with alpha(1)-antitrypsin deficiency. Chest 2000; 117(5 Suppl 1): 250S-251S.
- PAONE G, WADA A, STEVENS LA, MATIN A, HIRAYAMA T, LEVINE RL, MOSS J. ADP ribosylation of human neutrophil peptide-1 regulates its biological properties. Proc Natl Acad Sci USA 2002; 99: 8231-8235.
- 64. MILLER M, RAMSDELL J, FRIEDMAN P, CHO J, RENVALL M, BROIDE D. Computed tomographic scan-diagnosed chronic obstructive pulmonary diseaseemphysema: eotaxin-1 is associated with bronchodilator response and extent of emphysema. J Allergy Clin Immunol 2007; 120: 1118-1125.
- 65. PAONE G, DI TANNA GL, LEONE A, BATZELLA S, CONTI V, BELLI F, GALLUCCIO G, CAMMARELLA I, SEBASTIANI A, TERZANO C, VESTRI AR. Potential usefulness of a combination of inflammatory markers in identifying patients with sarcoidosis and monitoring respiratory functional worsening. Am J Clin Pathol 2012; 137: 497-499.
- 66. PAONE G, LEONE A, BATZELLA S, CONTI V, BELLI F, DE MARCHIS L, MANNOCCI A, SCHMID G, TERZANO C. Use of discriminant analysis in assessing functional worsening in patients with sarcoidosis by means of a combination of inflammatory markers. Inflamm Res 2013; 62: 325-332
- 67. CSANKY E, RÜHL R, SCHOLTZ B, VASKO A, TAKACS L, HEMPEL WM. Lipid metabolite levels of prostaglandin D2 and lung function of chronic obstructive pulmonary disease patients and controls. Electrophoresis. 2009; 30: 1228-1234.
- ANTCZAK A, PIOTROWSKI W, MARCZAK J, CIEBIADA M, GORSKI P, BARNES PJ. Correlation between eicosanoids in bronchoalveolar lavage fluid and in exhaled breath condensate. Dis Markers 2011; 30: 213-220.
- COMANDINI A, MARZANO V, CURRADI G, FEDERICI G, URBANI A, SALTINI C. Markers of anti-oxidant response in tobacco smoke exposed subjects: a data-mining review. Pulm Pharmacol Ther 2010; 23: 482-492.
- SMOLONSKA J, WUMENGA C, POSTMA DS, BOEZEN HM. Meta-analyses on suspected chronic obstructive pulmonary disease genes: a summary of 20 years' research. Am J Respir Crit Care Med 2009; 180: 618-631.
- PRICE D, FREEMAN D, CLELAND J, KAPLAN A, CERASOLI F. Earlier diagnosis and earlier treatment of COPD in primary care. Prim Care Respir J2011; 20: 15-22.
- YOON HI, SIN DD. Biomarkers of therapeutic response in patients with chronic obstructive pulmonary disease: A critical review of the literature. Drugs 2011; 71: 1821–1837.
- 73. TZORTZAKI EG, TSOUMAKIDOU M, MAKRIS D, SIAFAKAS NM. Laboratory markers for COPD in "suscepti-

ble" smokers. Clin Chim Acta 2006; 364: 124-138.

- 74. PAONE G, CONTI V, VESTRI A, LEONE A, PUGLISI G, BE-NASSI F, BRUNETTI G, SCHMID G, CAMMARELLA I, TERZANO C. Analysis of sputum markers in the evaluation of lung inflammation and functional impairment in symptomatic smokers and COPD patients. Dis Markers 2011; 31: 91-100.
- 75. PTOLEMY AS, RIFAI N. What is a biomarker? Research investments and lack of clinical integration necessitate a review of biomarker terminology and validation schema. Scand J Clin Lab Invest Suppl 2010; 242: 6-14.
- VESTBO J, RENNARD S. Chronic obstructive pulmonary disease biomarker(s) for disease activity needed-urgently. Am J Respir Crit Care Med 2010; 182: 863-864.
- 77. LEE EJ, IN KH, KIM JH, LEE SY, SHIN C, SHIM JJ, KANG KH, YOO SH, KIM CH, KIM HK, LEE SH, UHM CS. Proteomic analysis in lung tissue of smokers and COPD patients. Chest 2009; 135: 344-352.
- YANG JY, JIN J, ZHANG Z, ZHANG L, SHEN C. Integration microarray and regulation datasets for Chronic Obstructive Pulmonary Disease. Eur Rev Med Pharmacol Sci 2013; 17: 1923-1931.