11 research outputs found

    Modelling of annual sand transports at the Dutch lower shoreface

    Get PDF
    Dutch coastal policy aims for a safe, economically strong and attractive coast. This is achieved by maintaining the part of the coast that support these functions; the coastal foundation. The coastal foundation is maintained by means of sand nourishments. Up to now, it has been assumed that net transports across the coastal foundation's offshore boundary at the 20 m depth contour are negligibly small. In the framework of the Coastal Genesis 2.0 program we investigate sand transports across this boundary and across other depth contours at the lower shoreface. The purpose of this paper is to provide knowledge for a well-founded choice of the seaward boundary of the coastal foundation. The lower shoreface is the zone where the mixed action of shoreface currents (tide-, wind- and density gradient driven) and shoaling and refracting waves is predominant. Transport rates are relatively small and hence the bed levels in the lower shoreface undergo relatively slow changes

    Coastal natural and nature-based features: international guidelines for flood risk management

    Get PDF
    Natural and nature-based features (NNBF) have been used for more than 100 years as coastal protection infrastructure (e.g., beach nourishment projects). The application of NNBF has grown steadily in recent years with the goal of realizing both coastal engineering and environment and social co-benefits through projects that have the potential to adapt to the changing climate. Technical advancements in support of NNBF are increasingly the subject of peer-reviewed literature, and guidance has been published by numerous organizations to inform technical practice for specific types of nature-based solutions. The International Guidelines on Natural and Nature-Based Features for Flood Risk Management was recently published to provide a comprehensive guide that draws directly on the growing body of knowledge and practitioner experience from around the world to inform the process of conceptualizing, planning, designing, engineering, and operating NNBF. These Guidelines focus on the role of nature-based solutions and natural infrastructure (beaches, dunes, wetlands and plant systems, islands, reefs) as a part of coastal and riverine flood risk management. In addition to describing each of the NNBF types, their use, design, implementation, and maintenance, the guidelines describe general principles for employing NNBF, stakeholder engagement, monitoring, costs and benefits, and adaptive management. An overall systems approach is taken to planning and implementation of NNBF. The guidelines were developed to support decision-makers, project managers, and practitioners in conceptualizing, planning, designing, engineering, implementing, and maintaining sustainable systems for nature-based flood risk management. This paper summarizes key concepts and highlights challenges and areas of future research

    Future sediment exchange between the Dutch Wadden Sea and North Sea Coast - Insights based on ASMITA modelling

    No full text
    The sediment exchange between the Dutch Wadden Sea and the North Sea coastal zone is of key importance to Dutch coastal management. Net sediment import from the coastal zone to the Wadden Sea results in coastal erosion which needs to be compensated through nourishments. At the same time net sediment import is the source of sediment for the intertidal flats in the Wadden Sea to adapt to sea level rise (SLR). Understanding the current and future sediment exchange is therefore essential for sustainable coastal management. Insights in the sediment exchange directly influence the coastal nourishment strategies applied to the Dutch coasts. Projections of the future sediment exchange between the Dutch Wadden Sea and the North Sea are established using the aggregated morphodynamic model ASMITA for five sea level rise scenarios, viz. the present rate of 2 mm/yr and accelerated rates of 4, 6, 8 and 17 mm/yr in 2100. The differences in the projected import rates between the five sea level rise scenarios until 2100 are not as large as the differences in sea level rise rates may suggest. For the Eastern part of the Dutch Wadden Sea, where the morphology is near its dynamic equilibrium, the projected import rate in 2100 varies with a factor 3 (300%), for sea level rise rates from 2 to 17 mm/yr (factor 8.5, 850%). In the western part of the Dutch Wadden Sea, where the morphology is still far from equilibrium due to the closure of the Zuiderzee, the projected import rate in 2100 varies a factor 1.45 (145%) for these sea level rise rates. For the total Dutch Wadden Sea this is a factor 1.7 (170%). The projected increase of the import rate until 2100 with respect to the present situation (2020) is up to a factor 1.45 (145%) for the highest sea level rise scenario, which is significant but not substantial.Coastal Engineerin

    Modelling of annual sand transports at the Dutch lower shoreface

    No full text
    Dutch coastal policy aims for a safe, economically strong and attractive coast. This is achieved by maintaining the part of the coast that support these functions; the coastal foundation. The coastal foundation is maintained by means of sand nourishments. Up to now, it has been assumed that net transports across the coastal foundation's offshore boundary at the 20 m depth contour are negligibly small. In the framework of the Coastal Genesis 2.0 program we investigated sand transports across this boundary and across other depth contours at the lower shoreface. This paper presents a computationally efficient approach to compute the annual sand transport rates at the Dutch lower shoreface. It is based on the 3D Dutch Continental Shelf Model with Flexible Mesh (3D DCSM-FM), a wave transformation tool and a 1DV sand transport module. We validate the hydrodynamic input against field measurements and present flow, wave and sand transport computations for the years 2013–2017. Our computations show that the net annual sand transport rates along the Dutch coast are determined by peak tidal velocities (and asymmetry thereof), density driven residual flows, wind driven residual flows and waves. The annual mean alongshore transports vary along the continuous 20 m depth contour. The computed total cross-shore transports are onshore directed over the continuous 20 m, 18 m and 16 m depth contours and increase with decreasing water depth. The effect of density difference and wind on the 3D structure of the flow and on the sand transports cannot be neglected along the Dutch lower shoreface. Our computations show that excluding the effect of density results in a significant decrease of the onshore directed transports. Also switching off wind largely counteracts this effect. The net cross-shore transport is determined by a delicate balance between gross onshore and offshore transports, where wave conditions are important. We show an example for Scheveningen where the net cross-shore transport is onshore directed when including all wave conditions but would be offshore directed when excluding waves higher than 3.5 m. In contrast, at Callantsoog the highest waves contribute more to the offshore directed transports. These results suggest that storm conditions play an important role in the magnitude and direction of the net annual transport rates at the lower shoreface

    Modelling of annual sand transports at the Dutch lower shoreface

    No full text
    Dutch coastal policy aims for a safe, economically strong and attractive coast. This is achieved by maintaining the part of the coast that support these functions; the coastal foundation. The coastal foundation is maintained by means of sand nourishments. Up to now, it has been assumed that net transports across the coastal foundation’s offshore boundary at the 20 m depth contour are negligibly small. In the framework of the Coastal Genesis 2.0 program we investigated sand transports across this boundary and across other depth contours at the lower shoreface. This paper presents a computationally efficient approach to compute the annual sand transport rates at the Dutch lower shoreface. It is based on the 3D Dutch Continental Shelf Model with Flexible Mesh (3D DCSM-FM), a wave transformation tool and a 1DV sand transport module. We validate the hydrodynamic input against field measurements and present flow, wave and sand transport computations for the years 2013–2017. Our computations show that the net annual sand transport rates along the Dutch coast are determined by peak tidal velocities (and asymmetry thereof), density driven residual flows, wind driven residual flows and waves. The annual mean alongshore transports vary along the continuous 20 m depth contour. The computed total cross-shore transports are onshore directed over the continuous 20 m, 18 m and 16 m depth contours and increase with decreasing water depth. The effect of density difference and wind on the 3D structure of the flow and on the sand transports cannot be neglected along the Dutch lower shoreface. Our computations show that excluding the effect of density results in a significant decrease of the onshore directed transports. Also switching off wind largely counteracts this effect. The net cross-shore transport is determined by a delicate balance between gross onshore and offshore transports, where wave conditions are important. We show an example for Scheveningen where the net cross-shore transport is onshore directed when including all wave conditions but would be offshore directed when excluding waves higher than 3.5 m. In contrast, at Callantsoog the highest waves contribute more to the offshore directed transports. These results suggest that storm conditions play an important role in the magnitude and direction of the net annual transport rates at the lower shoreface

    Future response of the Wadden Sea tidal basins to relative sea-level rise — an aggregated modelling approach

    No full text
    Climate change, and especially the associated acceleration of sea-level rise, forms a serious threat to the Wadden Sea. The Wadden Sea contains the world’s largest coherent intertidal flat area and it is known that these flats can drown when the rate of sea-level rise exceeds a critical limit. As a result, the intertidal flats would then be permanently inundated, seriously affecting the ecological functioning of the system. The determination of this critical limit and the modelling of the transient process of how a tidal basin responds to accelerated sea-level rise is of critical importance. In this contribution we revisit the modelling of the response of the Wadden Sea tidal basins to sea-level rise using a basin scale morphological model (aggregated scale morphological interaction between tidal basin and adjacent coast, ASMITA). Analysis using this aggregated scale model shows that the critical rate of sea-level rise is not merely influenced by the morphological equilibrium and the morphological time scale, but also depends on the grain size distribution of sediment in the tidal inlet system. As sea-level rises, there is a lag in the morphological response, which means that the basin will be deeper than the systems morphological equilibrium. However, so long as the rate of sea-level rise is constant and below a critical limit, this offset becomes constant and a dynamic equilibrium is established. This equilibrium deviation as well as the time needed to achieve the dynamic equilibrium increase non-linearly with increasing rates of sea-level rise. As a result, the response of a tidal basin to relatively fast sea-level rise is similar, no matter if the sea-level rise rate is just below, equal or above the critical limit. A tidal basin will experience a long process of ‘drowning’ when sea-level rise rate exceeds about 80% of the critical limit. The insights from the present study can be used to improve morphodynamic modelling of tidal basin response to accelerating sea-level rise and are useful for sustainable management of tidal inlet systems

    Future Response of the Wadden Sea Tidal Basins to Relative Sea-Level rise—An Aggregated Modelling Approach

    No full text
    Climate change, and especially the associated acceleration of sea-level rise, forms a serious threat to the Wadden Sea. The Wadden Sea contains the world’s largest coherent intertidal flat area and it is known that these flats can drown when the rate of sea-level rise exceeds a critical limit. As a result, the intertidal flats would then be permanently inundated, seriously affecting the ecological functioning of the system. The determination of this critical limit and the modelling of the transient process of how a tidal basin responds to accelerated sea-level rise is of critical importance. In this contribution we revisit the modelling of the response of the Wadden Sea tidal basins to sea-level rise using a basin scale morphological model (aggregated scale morphological interaction between tidal basin and adjacent coast, ASMITA). Analysis using this aggregated scale model shows that the critical rate of sea-level rise is not merely influenced by the morphological equilibrium and the morphological time scale, but also depends on the grain size distribution of sediment in the tidal inlet system. As sea-level rises, there is a lag in the morphological response, which means that the basin will be deeper than the systems morphological equilibrium. However, so long as the rate of sea-level rise is constant and below a critical limit, this offset becomes constant and a dynamic equilibrium is established. This equilibrium deviation as well as the time needed to achieve the dynamic equilibrium increase non-linearly with increasing rates of sea-level rise. As a result, the response of a tidal basin to relatively fast sea-level rise is similar, no matter if the sea-level rise rate is just below, equal or above the critical limit. A tidal basin will experience a long process of ‘drowning’ when sea-level rise rate exceeds about 80% of the critical limit. The insights from the present study can be used to improve morphodynamic modelling of tidal basin response to accelerating sea-level rise and are useful for sustainable management of tidal inlet systems.Coastal Engineerin

    Modelling of annual sand transports at the Dutch lower shoreface

    Get PDF
    Dutch coastal policy aims for a safe, economically strong and attractive coast. This is achieved by maintaining the part of the coast that support these functions; the coastal foundation. The coastal foundation is maintained by means of sand nourishments. Up to now, it has been assumed that net transports across the coastal foundation's offshore boundary at the 20 m depth contour are negligibly small. In the framework of the Coastal Genesis 2.0 program we investigated sand transports across this boundary and across other depth contours at the lower shoreface. This paper presents a computationally efficient approach to compute the annual sand transport rates at the Dutch lower shoreface. It is based on the 3D Dutch Continental Shelf Model with Flexible Mesh (3D DCSM-FM), a wave transformation tool and a 1DV sand transport module. We validate the hydrodynamic input against field measurements and present flow, wave and sand transport computations for the years 2013–2017. Our computations show that the net annual sand transport rates along the Dutch coast are determined by peak tidal velocities (and asymmetry thereof), density driven residual flows, wind driven residual flows and waves. The annual mean alongshore transports vary along the continuous 20 m depth contour. The computed total cross-shore transports are onshore directed over the continuous 20 m, 18 m and 16 m depth contours and increase with decreasing water depth. The effect of density difference and wind on the 3D structure of the flow and on the sand transports cannot be neglected along the Dutch lower shoreface. Our computations show that excluding the effect of density results in a significant decrease of the onshore directed transports. Also switching off wind largely counteracts this effect. The net cross-shore transport is determined by a delicate balance between gross onshore and offshore transports, where wave conditions are important. We show an example for Scheveningen where the net cross-shore transport is onshore directed when including all wave conditions but would be offshore directed when excluding waves higher than 3.5 m. In contrast, at Callantsoog the highest waves contribute more to the offshore directed transports. These results suggest that storm conditions play an important role in the magnitude and direction of the net annual transport rates at the lower shoreface.Coastal Engineerin

    Measurements of hydrodynamics, sediment, morphology and benthos on Ameland ebb-tidal delta and lower shoreface

    No full text
    A large-scale field campaign was carried out on the ebb-tidal delta (ETD) of Ameland Inlet, a basin of the Wadden Sea in the Netherlands, as well as on three transects along the Dutch lower shoreface. The data have been obtained over the years 2017-2018. The most intensive campaign at the ETD of Ameland Inlet was in September 2017. With this campaign, as part of KustGenese2.0 (Coastal Genesis 2.0) and SEAWAD, we aim to gain new knowledge on the processes driving sediment transport and benthic species distribution in such a dynamic environment. These new insights will ultimately help the development of optimal strategies to nourish the Dutch coastal zone in order to prevent coastal erosion and keep up with sea level rise. The dataset obtained from the field campaign consists of (i) single-and multi-beam bathymetry; (ii) pressure, water velocity, wave statistics, turbidity, conductivity, temperature, and bedform morphology on the shoal; (iii) pressure and velocity at six back-barrier locations; (iv) bed composition and macrobenthic species from box cores and vibrocores; (v) discharge measurements through the inlet; (vi) depth and velocity from X-band radar; and (vii) meteorological data. The combination of all these measurements at the same time makes this dataset unique and enables us to investigate the interactions between sediment transport, hydrodynamics, morphology and the benthic ecosystem in more detail. The data provide opportunities to calibrate numerical models to a high level of detail. Furthermore, the open-source datasets can be used for system comparison studies. The data are publicly available at 4TU Centre for Research Data at https://doi.org/10.4121/collection:seawad (Delft University of Technology et al., 2019) and https://doi.org/10.4121/collection:kustgenese2 (Rijkswaterstaat and Deltares, 2019). The datasets are published in netCDF format and follow conventions for CF (Climate and Forecast) metadata. The http://data.4tu.nl (last access: 11 November 2020) site provides keyword searching options and maps with the geographical position of the data
    corecore